627 research outputs found

    Investigation of warm fog properties and fog modification concepts Annual summary report

    Get PDF
    Ground based and aerial seeding of warm fog with hygroscopic materials and computer modeling of fog response to seedin

    Project Fog Drops 5. Task 1: A numerical model of advection fog. Task 2: Recommendations for simplified individual zero-gravity cloud physics experiments

    Get PDF
    A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems

    Investigation of warm fog properties and fog modification concepts

    Get PDF
    Warm fog seeding to determine potential of various sized and unsized hygroscopic chemicals for fog dissipatio

    Globular Cluster Systems in Brightest Cluster Galaxies. III: Beyond Bimodality

    Full text link
    We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the HST ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12000 to 23000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ~0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] = -2.4 to Solar. There are, however, significant differences between galaxies in the relative numbers of \emph{metal-rich} clusters, suggesting that they underwent significantly different histories of mergers with massive, gas-rich halos. Lastly, the proportion of metal-poor GCs rises especially rapidly outside projected radii R > 4 R_eff, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.Comment: In press for Astrophysical Journa

    C5AC_5^A axial form factor from bubble chamber experiments

    Full text link
    A careful reanalysis of both Argonne National Laboratory and Brookhaven National Laboratory data for weak single pion production is done. We consider deuteron nuclear effects and normalization (flux) uncertainties in both experiments. We demonstrate that these two sets of data are in good agreement. For the dipole parametrization of C5A(Q2)C_5^A(Q^2), we obtain C5A(0)=1.19±0.08C_5^A(0)=1.19\pm 0.08, MA=0.94±0.03M_A=0.94\pm 0.03 GeV. As an application we present the discussion of the uncertainty of the neutral current 1π0\pi^0 production cross section, important for the T2K neutrino oscillation experiment.Comment: 16 pages, 8 figures, 2 table

    Statistical Mechanics of the Quantum K-Satisfiability problem

    Full text link
    We study the quantum version of the random KK-Satisfiability problem in the presence of the external magnetic field Γ\Gamma applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and the saddle-point equation for the order parameter: the distribution P[h(m)]P[h(m)] of functions of magnetizations. The order parameter is interpreted as the histogram of probability distributions of individual magnetizations. In the limit of zero temperature and small transverse fields, to leading order in Γ\Gamma magnetizations m0m \approx 0 become relevant in addition to purely classical values of m±1m \approx \pm 1. Self-consistency equations for the order parameter are solved numerically using Quasi Monte Carlo method for K=3. It is shown that for an arbitrarily small Γ\Gamma quantum fluctuations destroy the phase transition present in the classical limit Γ=0\Gamma=0, replacing it with a smooth crossover transition. The implications of this result with respect to the expected performance of quantum optimization algorithms via adiabatic evolution are discussed. The replica-symmetric solution of the classical random KK-Satisfiability problem is briefly revisited. It is shown that the phase transition at T=0 predicted by the replica-symmetric theory is of continuous type with atypical critical exponents.Comment: 35 pages, 23 figures; changed abstract, improved discussion in the introduction, added references, corrected typo

    A New Technique for Finding Needles in Haystacks: A Geometric Approach to Distinguishing Between a New Source and Random Fluctuations

    Full text link
    We propose a new test statistic based on a score process for determining the statistical significance of a putative signal that may be a small perturbation to a noisy experimental background. We derive the reference distribution for this score test statistic; it has an elegant geometrical interpretation as well as broad applicability. We illustrate the technique in the context of a model problem from high-energy particle physics. Monte Carlo experimental results confirm that the score test results in a significantly improved rate of signal detection.Comment: 5 pages, 4 figure

    Direct CP violation for Bˉs0K0π+π\bar{B}_{s}^{0}\to K^{0}\pi^{+}\pi^{-} decay in QCD factorization

    Full text link
    In the framework of QCD factorization, based on the first order of isospin violation, we study direct CP violation in the decay of Bˉs0K0ρ0(ω)K0π+π\bar{B}_{s}^{0} \to K^{0}\rho^{0}(\omega)\to K^{0}\pi^{+}\pi^{-} including the effect of ρω\rho-\omega mixing. We find that the CP violating asymmetry is large via ρω\rho-\omega mixing mechanism when the invariant mass of the π+π\pi^{+}\pi^{-} pair is in the vicinity of the ω\omega resonance. For the decay of Bˉs0K0ρ0(ω)K0π+π\bar{B}_{s}^{0} \to K^{0}\rho^{0}(\omega)\to K^{0}\pi^{+}\pi^{-}, the maximum CP violating asymmetries can reach about 46%. We also discuss the possibility to observe the predicted CP violating asymmetries at the LHC

    Likelihood scan of the Super-Kamiokande I time series data

    Full text link
    In this work a detailed spectral analysis of the time series of the 8B solar neutrino flux published by the Super-Kamiokande Collaboration is presented, performed through a likelihood scan approach. Preliminarily a careful review of the analysis methodology is given, showing that the traditional periodicity search via the Lomb-Scargle periodogram is a special case of a more general likelihood based method. Since the data are published together with the relevant asymmetric errors, it is then shown how the likelihood analysis can be performed either with or without a prior error averaging. A key point of this work is the detailed illustration of the mathematical model describing the statistical properties of the estimated spectra obtained in the various cases, which is also validated through extensive Monte Carlo computations; the model includes a calculation for the prediction of the possible alias effects. In the successive investigation of the data, such a model is used to derive objective, mathematical predictions which are quantitatively compared with the features observed in the experimental spectra. This article clearly demonstrates that the handling of the errors is the origin of the discrepancy between published null observations and claimed significant periodicity in the same SK-I data sample. Moreover, the comprehensive likelihood analysis with asymmetric errors developed in this work provides results which cannot exclude the null hypothesis of constant rate, even though some indications stemming from the model at odd with such conclusion point towards the desirability of additional investigations with alternative methods to shed further light on the characteristics of the data.Comment: 49 pages, 38 figures. Calculation of the asymmetric likelihood revised. Accepted fo publication on Physical Review
    corecore