4 research outputs found

    Understanding the Connection between Blasting and Highwall Stability

    Get PDF
    Surface mines continue to implement highwalls for several reasons, such as increasing recovery, improving margins, and justifying higher stripping ratios. Highwall stability is a complex issue that is dependent upon a variety of mining and geologic factors, and a safe design is necessary for a successful surface operation. To improve highwall stability, it is important to understand the connection between local geology and blasting. Explosives are employed throughout the mining industry for primary rock breakage. There are a number of controlled blasting techniques that can be implemented to improve highwall stability. These include line drilling, smooth wall blasting, trim blasting, buffer blasting, air decking, and presplitting. Each of these techniques have associated advantages and disadvantages. Understanding local geology is necessary for selecting the appropriate controlled blasting technique. Furthermore, understanding the limitations and conditions for successful implementation of each technique is necessary. A discussion of the impact of geologic conditions on highwall stability is provided. Additionally, discussion is provided for the successful incorporation of the controlled blasting techniques listed above, and the associated mining and geologic factors that influence the selection and design of controlled blasting plans. Finally, a new methodology is proposed

    Evaluation of the 20 L Dust Explosibility Testing Chamber and Comparison to a Modified 38 L Vessel for Underground Coal

    Get PDF
    The phenomenon of combustible dust explosions is present within many industries. Tests for explosibility of dust clouds per ASTM E1226 use a 20 L explosive chamber that places the combustible dust directly below the dispersion nozzle which generates a thorough mixture for testing purposes. However, in the underground coal mining industry, there are a number of geologic, mining, and regulatory factors that change the deposition scheme of combustible coal dust. This causes the atmosphere of a coal mine to have a variable rock dust-coal dust mixture at the time of ignition. To investigate the impact of this variable atmosphere, a series of lean explosibility tests were conducted on a sample of Pittsburgh Pulverized coal dust. These explosibility tests were conducted in a 38 L chamber with a 5 kJ Sobbe igniter. The 38 L chamber generates a variable air-dust mixture prior to ignition. The test results indicate that the 38 L chamber experiences reduced explosive pressures, and lower explosibility index values when compared to the 20 L chamber

    Enriched biodiversity data as a resource and service

    Get PDF
    Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such integration in this research domain. Conclusions: Beyond deriving prototype solutions for each use case, areas of inadequacy were discussed and are being pursued further. It was striking how many possible applications for biodiversity data there were and how quickly solutions could be put together when the normal constraints to collaboration were broken down for a week. Conversely, mobilising biodiversity knowledge from their silos in heritage literature and natural history collections will continue to require formalisation of the concepts (and the links between them) that define the research domain, as well as increased interoperability between the software platforms that operate on these concepts

    Evaluation of Blasting-Induced Ground Vibrations on Highwall Stability

    No full text
    Highwall miners continue to be implemented by operations to increase recovery, improve margins, and justify higher stripping ratios as high quality surface reserves become increasingly rare. Many times, operations facilitate projected underground operations by leaving an intact highwall for development purposes. These facts result in larger highwalls that are left standing for increased periods of time prior to reclamation. As a consequence, worker exposure and risk is also elevated, resulting in higher potential for accidents or fatalities relating to surface highwalls. Highwall stability is a complex issue, dependent on both geologic and mining factors. Dynamic numerical modeling offers the capability to assess possible stability issues related to blasting-induced ground vibrations. Research has been conducted to evaluate the effect of highwall stability due to ground vibrations from blasting events. Additionally, the relationship of amplitude and frequency, and their impact on highwall stability is investigated. The results of this modeling indicate that amplitude has little impact on stability. However, frequency has a significant impact on highwall stability
    corecore