73 research outputs found

    Breath-hold FSE for accurate imaging of myocardial and hepatic R2

    Get PDF
    Session 21: Hepatic Storage Disease - Oral presentationMRI provides a means to non-invasively assess tissue iron concentration by exploiting the paramagnetic effects of iron on T2 or T2*. The most widely used method is T2* imaging is sensitive to non-iron related magnetic field (B0) inhomogeneities, which can confound T2* measurements within the whole heart and liver. An alternative method is T2 imaging, but they are generally performed during free breathing with respiratory gating due to their low data acquisition efficiency. The purpose of this study was to develop a breath-hold fast spin echo (FSE) sequence for fast and accurate imaging of myocardial and hepatic T2.published_or_final_versionThe 17th Scientific Meeting & Exhibition of the International Society of Magnetic Resonance in Medicine (ISMRM), Honolulu, HI., 18-24 April 2009. In Proceedings of ISMRM 17th Scientific Meeting & Exhibition, 2009, p. 20

    R2 imaging of ferritin iron in thalassaemia patients off and on iron-chelation therapy

    Get PDF
    Myocardial Tissue Characterization: Fat, Hemorrhage & Edema - Poster presentationAccurate assessment of iron burden is crucial for the management of iron-chelation therapy. MRI provides a means to non-invasively assess tissue iron concentration by exploiting the paramagnetic effects of iron on the relaxation rates of solvent protons. The most widely used method is R2* imaging, which has been shown to be sensitive to myocardial iron overload. Recently, a breath-hold fast spin echo sequence has been proposed for fast and accurate imaging of myocardial and hepatic R2. The purpose of this study was to determine which relaxation rates are sensitive to iron-chelation therapy.published_or_final_versionThe 17th Scientific Meeting & Exhibition of the International Society of Magnetic Resonance in Medicine (ISMRM), Honolulu, HI., 18-24 April 2009. In Proceedings of ISMRM 17th Scientific Meeting & Exhibition, 2009, p. 375

    A breath-hold R2 mapping pulse sequence detects a decrease in myocardial ferritin iron after one-week of iron chelation

    Get PDF
    Oral Abstract Session XI – New CMR Methods Applied to Human Imaging: O69Intracellular ferritin iron is evidently in equilibrium with the cytosolic iron pool that can change rapidly with iron chelation. This study demonstrates the feasibility of quantitatively detecting short-term changes in myocardial iron produced by iron-chelating therapy using RR2 measurement.postprintThe 13th Annual Scientific Sessions of the Society for Cardiovascular Magnetic Resonance (SCMR), Phoenix, AZ., 21-24 January 2010. In Final Program of the 13th Annual Scientific Sessions of SCMR, 2010, p. 29, abstract no. O6

    Heart and liver R2 and R2* measurements in patients with thalassaemia major at 3T

    Get PDF
    Myocardial Tissue Characterization: Fat, Hemorrhage & Edema - Poster presentationTo determine the feasibility of measurements of transverse relaxation times for assessment of tissue iron overload at high field, we compared results of determinations of R2 and R2* using breathhold multi-echo spin-echo (MESE) and multi-echo gradient echo (MEGE) sequences, respectively, at 3T and at 1.5T in normal subjects and patients with thalassaemia major. Our results, the first reported measurements of R2 at both 3T and 1.5T in iron overloaded patients, demonstrate significant correlations in heart and liver at the two field strengths. These results provide evidence that myocardial and hepatic R2 can be measured at 3T as indicators of iron overload.published_or_final_versionThe 17th Scientific Meeting & Exhibition of the International Society of Magnetic Resonance in Medicine (ISMRM), Honolulu, HI., 18-24 April 2009. In Proceedings of ISMRM 17th Scientific Meeting & Exhibition, 2009, p. 375

    Monitoring iron chelation effect in hearts of thalassaemia patients with improved sensitivity using reduced transverse relaxation rate (RR2)

    Get PDF
    Posters - Myocardial Viability: Human Models: No. 3660Accurate MRI characterization of myocardial iron is needed to improve the diagnosis and management of thalassaemia patients with transfusional iron overload. This study aimed to demonstrate that a new transverse relaxation index, the reduced R2 (RR2) that is estimated from non-monoexponential multi-echo CPMG signal decay and sensitive to ferritin iron, could detect the myocardial iron changes immediately following 1-week iron chelation suspension in thalassaemia patients at 3T.postprin

    In-Vivo Visualization of Tumor Microvessel Density and Response to Anti-Angiogenic Treatment by High Resolution MRI in Mice

    Get PDF
    Purpose: Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance. Experimental Design: We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice. Results: Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth. Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a decrease of microvessel density and a slight increase in tumor vessel size. Conclusions: We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects ha

    Functional and Structural Characteristics of Tumor Angiogenesis in Lung Cancers Overexpressing Different VEGF Isoforms Assessed by DCE- and SSCE-MRI

    Get PDF
    The expressions of different vascular endothelial growth factor (VEGF) isoforms are associated with the degree of tumor invasiveness and the patient's prognosis in human cancers. We hypothesized that different VEGF isoforms can exert different effects on the functional and structural characteristics of tumor angiogenesis. We used dynamic contrast-enhanced MRI (DCE-MRI) and steady-state contrast-enhanced MRI (SSCE-MRI) to evaluate in vivo vascular functions (e.g., perfusion and permeability) and structural characteristics (e.g., vascular size and vessel density) of the tumor angiogenesis induced by different VEGF isoforms (VEGF121, VEGF165, and VEGF189) in a murine xenograft model of human lung cancer. Tumors overexpressing VEGF189 were larger than those overexpressing the other two VEGF isoforms. The Ktrans map obtained from DCE-MRI revealed that the perfusion and permeability functions of tumor microvessels was highest in both the rim and core regions of VEGF189-overexpressing tumors (p<0.001 for both tumor rim and core). The relative vessel density and relative vessel size indexes derived from SSCE-MRI revealed that VEGF189-overexpressing tumors had the smallest (p<0.05) and the most-dense (p<0.01) microvessels, which penetrated deeply from the tumor rim into the core, followed by the VEGF165-overepxressing tumor, whose microvessels were located mainly in the tumor rim. The lowest-density microvessels were found in the VEGF121-overexpressing tumor; these microvessels had a relatively large lumen and were found mainly in the tumor rim. We conclude that among the three VEGF isoforms evaluated, VEGF189 induces the most densely sprouting and smallest tumor microvessels with the highest in vivo perfusion and permeability functions. These characteristics of tumor microvessels may contribute to the reported adverse effects of VEGF189 overexpression on tumor progression, metastasis, and patient survival in several human cancers, including non-small cell lung cancer, and suggest that applying aggressive therapy may be necessary in human cancers in which VEGF189 is overexpressed

    Magnetic resonance imaging of brain angiogenesis after stroke

    Get PDF
    Stroke is a major cause of mortality and long-term disability worldwide. The initial changes in local perfusion and tissue status underlying loss of brain function are increasingly investigated with noninvasive imaging methods. In addition, there is a growing interest in imaging of processes that contribute to post-stroke recovery. In this review, we discuss the application of magnetic resonance imaging (MRI) to assess the formation of new vessels by angiogenesis, which is hypothesized to participate in brain plasticity and functional recovery after stroke. The excellent soft tissue contrast, high spatial and temporal resolution, and versatility render MRI particularly suitable to monitor the dynamic processes involved in vascular remodeling after stroke. Here we review recent advances in the field of MR imaging that are aimed at assessment of tissue perfusion and microvascular characteristics, including cerebral blood flow and volume, vascular density, size and integrity. The potential of MRI to noninvasively monitor the evolution of post-ischemic angiogenic processes is demonstrated from a variety of in vivo studies in experimental stroke models. Finally, we discuss some pitfalls and limitations that may critically affect the accuracy and interpretation of MRI-based measures of (neo)vascularization after stroke

    Functional MRI and Diffusion Tensor Imaging of Brain Reorganization After Experimental Stroke

    Get PDF
    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models

    Identification of a Negative Allosteric Site on Human α4β2 and α3β4 Neuronal Nicotinic Acetylcholine Receptors

    Get PDF
    Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders
    corecore