54 research outputs found
Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors
Additional file 6: Figure S1. Derivation of iPS cells in defined culture conditions
Gaps and Doubts in Search to Recognize Glioblastoma Cellular Origin and Tumor Initiating Cells
Cellular origin of glioblastoma (GB) is constantly discussed and remains a controversial subject. Unfortunately, neurobiologists are not consistent in defining neural stem cells (NSC) complicating this issue even further. Nevertheless, some suggestions referring to GB origin can be proposed based on comparing GB to central nervous system (CNS) cells. Firstly, GB cells show in vitro differentiation pattern similar to GFAP positive neural cells, rather than classical (GFAP negative) NSC. GB cells in primary cultures become senescent in vitro, similar to GFAP positive neural progenitors, whereas classical NSC proliferate in vitro infinitely. Classical NSC apoptosis triggered by introduction of IDH1R132H undermines hypothesis stating that IDH-mutant (secondary) GB origins from these NSC. Analysis of biological role of typical IDH-wildtype (primary) GB oncogene such as EGFRvIII also favors GFAP positive cells rather than classical NSC as source of GB. Single-cell NGS and single-cell transcriptomics also suggest that GFAP positive cells are GB origin. Considering the above-mentioned and other discussed in articles data, we suggest that GFAP positive cells (astrocytes, radial glia, or GFAP positive neural progenitors) are more likely to be source of GB than classical GFAP negative NSC, and further in vitro assays should be focused on these cells. It is highly possible that several populations of tumor initiating cells (TIC) exist within GB, adjusting their phenotype and even genotype to various environmental conditions including applied therapy and periodically going through different TIC states as well as non-TIC state. This adjustment is driven by changes in number and types of amplicons. The existence of various populations of TIC would enable creating neoplastic foci in different environments and increase tumor aggressiveness
Efficient and simple approach to in vitro culture of primary epithelial cancer cells
Synopsis Primary cancer cells constitute a favourable testing platform for in vitro research in oncology field as they reflect tumour state more accurately than the most commonly employed stable cell lines. Unfortunately, due to limited availability of material and difficulties with protocols validation, primary models are rarely implemented into laboratory practice. We have compared protocols for primary cultures, differing in media components and plate coatings. In terms of culture establishment, application of Geltrex ® coating demonstrated equal efficiency to feeder layer (83% compared with 72% successfully established breast and 80% compared with 80% prostate tumour specimens), yet it was substantially less complicated and easier to validate. Both Geltrex ® coating and tissue-specific primary cell medium were permanently required to successfully maintain primary epithelial prostate cancer cells (PEPCs) in culture. In case of primary epithelial breast cancer cells (PEBCs), collagen I coating enabled to obtain comparable number of passages to Geltrex ® coating (P = 0.438). Commercial primary cell media demonstrated lower efficiency than tissuespecific ones (PEPCs -5 compared with 8 and PEBCs -6 compared with 9 passages). Interestingly, both analysed tumour types were unsusceptible to induction of culture lifespan extension when transduced with SV40LT, BMI-1 or hEST2 genes, commonly applied as potential immortalizing agents. In conclusion, the approach based on extracellular matrix reconstitution and tissue-specific primary cell media is easy to validate and provides in vitro expansion sufficient for analytical purposes (approximately 8 passages). Therefore, it may facilitate implementation of hardly available experimental models for a variety of analyses
IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis.
BACKGROUND:The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. METHODS:Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. RESULTS:Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. CONCLUSIONS:Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust apoptosis causes differentiation deficiency of IDH1R132H-expressing cells
Proteomic and Transcriptomic Landscapes of Alström and Bardet–Biedl Syndromes
Alström syndrome (ALMS) and Bardet–Biedl syndrome (BBS) are rare genetic diseases with a number of common clinical features ranging from early-childhood obesity and retinal degeneration. ALMS and BBS belong to the ciliopathies, which are known to have the expression products of genes, encoding them as cilia-localized proteins in multiple target organs. The aim of this study was to perform transcriptomic and proteomic analysis on cellular models of ALMS and BBS syndromes to identify common and distinct pathological mechanisms present in both syndromes. For this purpose, epithelial cells were isolated from the urine of patients and healthy subjects, which were then cultured and reprogrammed into induced pluripotent stem (iPS) cells. The pathways of genes associated with the metabolism of lipids and glycosaminoglycan and the transport of small molecules were found to be concomitantly downregulated in both diseases, while transcripts related to signal transduction, the immune system, cell cycle control and DNA replication and repair were upregulated. Furthermore, protein pathways associated with autophagy, apoptosis, cilium assembly and Gli1 protein were upregulated in both ciliopathies. These results provide new insights into the common and divergent pathogenic pathways between two similar genetic syndromes, particularly in relation to primary cilium function and abnormalities in cell differentiation
EGFR Activation Leads to Cell Death Independent of PI3K/AKT/mTOR in an AD293 Cell Line
<div><p>The Epidermal Growth Factor Receptor (EGFR) and its mutations contribute in various ways to tumorigenesis and biology of human cancers. They are associated with tumor proliferation, progression, drug resistance and the process of apoptosis. There are also reports that overexpression and activation of wild-type EGFR may lead to cell apoptosis. To study this phenomenon, we overexpressed in an AD293 cell line two most frequently observed forms of the EGFR receptor: wild-type and the constitutively active mutant–EGFR variant III (EGFRvIII). Then, we compared the effect of EGF stimulation on cell viability and downstream EGFR signaling. AD293 cells overexpressing wild-type EGFR, despite a significant proliferation increase in serum supplemented medium, underwent apoptosis after EGF stimulation in serum free conditions. EGFRvIII expressing cells, however, were unaffected by either serum starvation or EGF treatment. The effect of EGF was completely neutralized by tyrosine kinase inhibitors (TKIs), indicating the specificity of this observation. Moreover, apoptosis was not prevented by inhibiting EGFR downstream proteins (PI3K, AKT and mTOR). Here we showed another EGFR function, dependent on environmental factors, which could be employed in therapy and drug design. We also proposed a new tool for EGFR inhibitor analysis.</p></div
- …