47 research outputs found
Erratum: Observational Constraints on the Ultrahigh Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment
This is an erratum to the original paper published in Physical Review D , 82 (2), article no. 022004, on 16 July 2010 (DOI: 10.1103/PhysRevD.82.022004)
Aligned, isotropic and patterned carbon nanotube substrates that control the growth and alignment of Chinese hamster ovary cells.
Here we culture Chinese hamster ovary cells on isotropic, aligned and patterned substrates based on multiwall carbon nanotubes. The nanotubes provide the substrate with nanoscale topography. The cells adhere to and grow on all substrates, and on the aligned substrate, the cells align strongly with the axis of the bundles of the multiwall nanotubes. This control over cell alignment is required for tissue engineering; almost all tissues consist of oriented cells. The aligned substrates are made using straightforward physical chemistry techniques from forests of multiwall nanotubes; no lithography is required to make inexpensive large-scale substrates with highly aligned nanoscale grooves. Interestingly, although the cells strongly align with the nanoscale grooves, only a few also elongate along this axis: alignment of the cells does not require a pronounced change in morphology of the cell. We also pattern the nanotube bundles over length scales comparable to the cell size and show that the cells follow this pattern
Aligned, isotropic and patterned carbon nanotube substrates that control the growth and alignment of Chinese hamster ovary cells.
Here we culture Chinese hamster ovary cells on isotropic, aligned and patterned substrates based on multiwall carbon nanotubes. The nanotubes provide the substrate with nanoscale topography. The cells adhere to and grow on all substrates, and on the aligned substrate, the cells align strongly with the axis of the bundles of the multiwall nanotubes. This control over cell alignment is required for tissue engineering; almost all tissues consist of oriented cells. The aligned substrates are made using straightforward physical chemistry techniques from forests of multiwall nanotubes; no lithography is required to make inexpensive large-scale substrates with highly aligned nanoscale grooves. Interestingly, although the cells strongly align with the nanoscale grooves, only a few also elongate along this axis: alignment of the cells does not require a pronounced change in morphology of the cell. We also pattern the nanotube bundles over length scales comparable to the cell size and show that the cells follow this pattern
A predictive tool for an effective use of <sup>18</sup>F-FDG PET in assessing activity of sarcoidosis
<p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-FDG PET/CT (PET) is useful in assessing inflammatory activity in sarcoidosis. However, no appropriate indications are available. The aim of this study was to develop a prediction rule that can be used to identify symptomatic sarcoidosis patients who have a high probability of PET-positivity.</p> <p>Methods</p> <p>We retrospectively analyzed a cohort of sarcoidosis patients with non organ specific persistent disabling symptoms (n = 95). Results of soluble interleukin-2 receptor (sIL-2R) assessment and high-resolution computed tomography (HRCT) were included in the predefined model. HRCT scans were classified using a semi-quantitative scoring system and PET findings as positive or negative, respectively. A prediction model was derived based on logistic regression analysis. We quantified the model’s performance using measures of discrimination and calibration. Finally, we constructed a prediction rule that should be easily applicable in clinical practice.</p> <p>Results</p> <p>The prediction rule showed good calibration and good overall performance (goodness-of-fit test, p = 0.78, Brier score 20.1%) and discriminated between patients with positive and negative PET findings (area under the receiver-operating characteristic curve, 0.83). If a positive predictive value for the presence of inflammatory activity of ≥90% is considered acceptable for clinical decision-making without referral to PET, PET would be indicated in only 29.5% of the patients. Using a positive predictive value of 98%, about half of the patients (46.3%) would require referral to PET.</p> <p>Conclusions</p> <p>The derived and internally validated clinical prediction rule, based on sIL-2R levels and HRCT scoring results, appeared to be useful to identify sarcoidosis patients with a high probability of inflammatory activity. Using this rule may enable a more effective use of PET scan for assessment of inflammatory activity in sarcoidosis.</p
Cutaneous Granulomatosis: a Comprehensive Review
Cutaneous granulomatosis is a heterogeneous group of diseases, characterized by a skin inflammatory reaction triggered by a wide variety of stimuli, including infections, foreign bodies, malignancy, metabolites, and chemicals. From a pathogenic point of view, they are divided into non-infectious and infectious granulomas. Pathophysiological mechanisms are still poorly understood. Non-infectious granulomatous skin diseases include granuloma annulare, necrobiosis lipoidica, rheumatic nodules, foreign body granulomas, cutaneous sarcoidosis, and interstitial granulomatous dermatitis. Necrobiosis lipoidica is more frequent in diabetic patients. Infectious granulomas of the skin are caused by mycobacteria, in particular Mycobacterium tuberculosis or atypical mycobacteria; parasites, such as Leishmania; or fungi. Pathogenic mechanisms of M. tuberculosis-related granuloma are discussed. From a clinical point of view, it is useful to divide cutaneous granulomatosis into localized and more disseminated forms, although this distinction can be sometimes artificial. Three types of localized granulomatous lesions can be distinguished: palisaded granulomas (granuloma annulare, necrobiosis lipoidica, and rheumatoid nodules), foreign body granulomas, and infectious granulomas, which are generally associated with localized infections. Disseminated cutaneous granulomas can be divided into infectious, in particular tuberculosis, and non-infectious forms, among which sarcoidosis and interstitial granulomatous dermatitis. From a histological point of view, the common denominator is the presence of a granulomatous inflammatory infiltrate in the dermis and/or hypodermis; this infiltrate is mainly composed of macrophages grouped into nodules having a nodular, palisaded or interstitial architecture. Finally, we propose which diagnostic procedure should be performed when facing a patient with a suspected cutaneous granulomatosis