28 research outputs found

    An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection

    No full text
    In this study we reported the development of a paper-based algal biosensor for the optical detection of nanoencapsulated-atrazine, a forefront nanoformulated herbicide with a high effective post-emergence herbicidal activity. In particular, the unicellular green photosynthetic algae Chlamydomonas reinhardtii was immobilised on a paper substrate soaked with an agar thin film and placed in a glass optical measurement cell, obtaining a totally environmental-friendly device. Nanoencapsulated-atrazine was detected by following the variable fluorescence (1-VJ) parameter, which decreased inversely proportional to the herbicide concentrations, in a range between 0.5 and 200 nM, indicating a linear relationship in the measured dose-response curves and a detection limit of 4 pM. Interference studies resulted in a very slight interference in presence of 2 ppm copper and 10 ppb arsenic at safety limits, as well as a slight matrix effect and a satisfactory recovery value of 96 ± 5% for 75 nM nanoencapsulated-atrazine in tap water. Stability studies were also performed obtaining a good storage stability up to 3 weeks. Results demonstrated the suitability of the proposed paper-based optical biosensor as a valid support in smart agriculture for on site, environmental friendly, cost effective and sensitive nanoencapsulated-atrazine analysis

    Preparation and characterization of poly(e-caprolactone) nanospheres containing the local anesthetic lidocaine

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The objective of this work was to develop a modified release system for the local anesthetic lidocaine (LDC), using poly(e-caprolactone) (PCL) nanospheres (NSs), to improve the pharmacological properties of the drug when administered by the infiltration route. In vitro experiments were used to characterize the system and investigate the release mechanism. The NSs presented a polydispersion index of 0.072, an average diameter of 449.6?nm, a zeta potential of -20.1?mV, and an association efficiency of 93.3%. The release profiles showed that the release of associated LDC was slower than that of the free drug. Atomic force microscopy analyses showed that the spherical structure of the particles was preserved as a function of time, as well as after the release experiments. Cytotoxicity and pharmacological tests confirmed that association with the NSs reduced the toxicity of LDC, and prolonged its anesthetic action. This new formulation could potentially be used in applications requiring gradual anesthetic release, especially dental procedures. (c) 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:215226, 20131021215226Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [06/00121-9, 07/00127-0, 10/11097-7
    corecore