85,390 research outputs found
Towards a Model of Understanding Social Search
Search engine researchers typically depict search as the solitary activity of
an individual searcher. In contrast, results from our critical-incident survey
of 150 users on Amazon's Mechanical Turk service suggest that social
interactions play an important role throughout the search process. Our main
contribution is that we have integrated models from previous work in
sensemaking and information seeking behavior to present a canonical social
model of user activities before, during, and after search, suggesting where in
the search process even implicitly shared information may be valuable to
individual searchers.Comment: Presented at 1st Intl Workshop on Collaborative Information Seeking,
2008 (arXiv:0908.0583
Flocking Regimes in a Simple Lattice Model
We study a one-dimensional lattice flocking model incorporating all three of
the flocking criteria proposed by Reynolds [Computer Graphics vol.21 4 (1987)]:
alignment, centring and separation. The model generalises that introduced by O.
J. O' Loan and M. R. Evans [J. Phys. A. vol. 32 L99 (1999)]. We motivate the
dynamical rules by microscopic sampling considerations. The model exhibits
various flocking regimes: the alternating flock, the homogeneous flock and
dipole structures. We investigate these regimes numerically and within a
continuum mean-field theory.Comment: 24 pages 7 figure
Foodplant Suitabilities and a New Oviposition Record for \u3ci\u3ePapilio Glaucus Canadensis\u3c/i\u3e (Lepidoptera: Papilionidae) in Northern Wisconsin and Michigan
(excerpt)
The eastern tiger swallowtail butterfly, Papilio glaucus L., is polyphagous, and has been reported to feed upon plant species of at least 13 families (Scudder 1889, Teitz 1972). The Canadian subspecies, P. glaucus canadensis Rothschild and Jordan, is generally believed to be univoltine, to be devoid of the genetic capacity for dark morph females, and to have morphologically distinct characteristics from the southern subspecies, P. glaucus glaucus L
Pair-factorized steady states on arbitrary graphs
Stochastic mass transport models are usually described by specifying hopping
rates of particles between sites of a given lattice, and the goal is to predict
the existence and properties of the steady state. Here we ask the reverse
question: given a stationary state that factorizes over links (pairs of sites)
of an arbitrary connected graph, what are possible hopping rates that converge
to this state? We define a class of hopping functions which lead to the same
steady state and guarantee current conservation but may differ by the induced
current strength. For the special case of anisotropic hopping in two dimensions
we discuss some aspects of the phase structure. We also show how this case can
be traced back to an effective zero-range process in one dimension which is
solvable for a large class of hopping functions.Comment: IOP style, 9 pages, 1 figur
Boundary layer integral matrix procedure code modifications and verifications
A summary of modifications to Aerotherm's Boundary Layer Integral Matrix Procedure (BLIMP) code is presented. These modifications represent a preliminary effort to make BLIMP compatible with other JANNAF codes and to adjust the code for specific application to rocket nozzle flows. Results of the initial verification of the code for prediction of rocket nozzle type flows are discussed. For those cases in which measured free stream flow conditions were used as input to the code, the boundary layer predictions and measurements are in excellent agreement. In two cases, with free stream flow conditions calculated by another JANNAF code (TDK) for use as input to BLIMP, the predictions and the data were in fair agreement for one case and in poor agreement for the other case. The poor agreement is believed to result from failure of the turbulent model in BLIMP to account for laminarization of a turbulent flow. Recommendations for further code modifications and improvements are also presented
Interim user's manual for boundary layer integral matrix procedure, version J
A computer program for analyzing two dimensional and axisymmetric nozzle performance with a variety of wall boundary conditions is described. The program has been developed for application to rocket nozzle problems. Several aids to usage of the program and two auxiliary subroutines are provided. Some features of the output are described and three sample cases are included
Simulation tools for future interferometers
For the design and commissioning of the LIGO interferometer, simulation tools have been used explicitly and implicitly. The requirement of the advanced LIGO interferometer is much more demanding than the first generation interferometer. Development of revised simulation tools for future interferometers are underway in the LIGO Laboratory. The outline of those simulation tools and applications are discussed
A Note on the Relativistic Covariance of the Cyclic Relations
It is shown that the Evans-Vigier modified electrodynamics is compatible with
the Relativity Theory.Comment: ReVTeX file, 14pp., no figure
Complexation of DNA with positive spheres: phase diagram of charge inversion and reentrant condensation
The phase diagram of a water solution of DNA and oppositely charged spherical
macroions is studied. DNA winds around spheres to form beads-on-a-string
complexes resembling the chromatin 10 nm fiber. At small enough concentration
of spheres these "artificial chromatin" complexes are negative, while at large
enough concentrations of spheres the charge of DNA is inverted by the adsorbed
spheres. Charges of complexes stabilize their solutions. In the plane of
concentrations of DNA and spheres the phases with positive and negative
complexes are separated by another phase, which contains the condensate of
neutral DNA-spheres complexes. Thus when the concentration of spheres grows,
DNA-spheres complexes experience condensation and resolubilization (or
reentrant condensation). Phenomenological theory of the phase diagram of
reentrant condensation and charge inversion is suggested. Parameters of this
theory are calculated by microscopic theory. It is shown that an important part
of the effect of a monovalent salt on the phase diagram can be described by the
nontrivial renormalization of the effective linear charge density of DNA wound
around a sphere, due to the Onsager-Manning condensation. We argue that our
phenomenological phase diagram or reentrant condensation is generic to a large
class of strongly asymmetric electrolytes. Possible implication of these
results for the natural chromatin are discussed.Comment: Many corrections to text. SUbmitted to J. Chem. Phy
- âŠ