491 research outputs found

    Caveolin-1 is a risk factor for postsurgery metastasis in preclinical melanoma models

    Get PDF
    Melanomas are highly lethal skin tumours that are frequently treated by surgical resection. However, the efficacy of such procedures is often limited by tumour recurrence and metastasis. Caveolin-1 (CAV1) has been attributed roles as a tumour suppressor, although in late-stage tumours, its presence is associated with enhanced metastasis. The expression of this protein in human melanoma development and particularly how the presence of CAV1 affects metastasis after surgery has not been defined. CAV1 expression in human melanocytes and melanomas increases with disease progression and is highest in metastatic melanomas. The effect of increased CAV1 expression can then be evaluated using B16F10 murine melanoma cells injected into syngenic immunocompetent C57BL/6 mice or human A375 melanoma cells injected into immunodeficient B6Rag1−/− mice. Augmented CAV1 expression suppresses tumour formation upon a subcutaneous injection, but enhances lung metastasis of cells injected into the tail vein in both models. A procedure was initially developed using B16F10 melanoma cells in C57BL/6 mice to mimic better the situation in patients undergoing surgery. Subcutaneous tumours of a defined size were removed surgically and local tumour recurrence and lung metastasis were evaluated after another 14 days. In this postsurgery setting, CAV1 presence in B16F10 melanomas favoured metastasis to the lung, although tumour suppression at the initial site was still evident. Similar results were obtained when evaluating A375 cells in B6Rag1−/− mice. These results implicate CAV1 expression in melanomas as a marker of poor prognosis for patients undergoing surgery as CAV1 expression promotes experimental lung metastasis in two different preclinical models

    ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful application of crosslinking combined with mass spectrometry for studying proteins and protein complexes requires specifically-designed crosslinking reagents, experimental techniques, and data analysis software. Using isotopically-coded ("heavy and light") versions of the crosslinker and cleavable crosslinking reagents is analytically advantageous for mass spectrometric applications and provides a "handle" that can be used to distinguish crosslinked peptides of different types, and to increase the confidence of the identification of the crosslinks.</p> <p>Results</p> <p>Here, we describe a program suite designed for the analysis of mass spectrometric data obtained with isotopically-coded <it>cleavable </it>crosslinkers. The suite contains three programs called: DX, DXDX, and DXMSMS. DX searches the mass spectra for the presence of ion signal doublets resulting from the light and heavy isotopic forms of the isotopically-coded crosslinking reagent used. DXDX searches for possible mass matches between cleaved and uncleaved isotopically-coded crosslinks based on the established chemistry of the cleavage reaction for a given crosslinking reagent. DXMSMS assigns the crosslinks to the known protein sequences, based on the isotopically-coded and un-coded MS/MS fragmentation data of uncleaved and cleaved peptide crosslinks.</p> <p>Conclusion</p> <p>The combination of these three programs, which are tailored to the analytical features of the specific isotopically-coded cleavable crosslinking reagents used, represents a powerful software tool for automated high-accuracy peptide crosslink identification. See: <url>http://www.creativemolecules.com/CM_Software.htm</url></p

    New Chiral Phases of Superfluid 3He Stabilized by Anisotropic Silica Aerogel

    Get PDF
    A rich variety of Fermi systems condense by forming bound pairs, including high temperature [1] and heavy fermion [2] superconductors, Sr2RuO4 [3], cold atomic gases [4], and superfluid 3He [5]. Some of these form exotic quantum states having non-zero orbital angular momentum. We have discovered, in the case of 3He, that anisotropic disorder, engineered from highly porous silica aerogel, stabilizes a chiral superfluid state that otherwise would not exist. Additionally, we find that the chiral axis of this state can be uniquely oriented with the application of a magnetic field perpendicular to the aerogel anisotropy axis. At suffciently low temperature we observe a sharp transition from a uniformly oriented chiral state to a disordered structure consistent with locally ordered domains, contrary to expectations for a superfluid glass phase [6].Comment: 6 pages, 4 figure, and Supplementary Informatio

    BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery.

    Get PDF
    Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation

    A toolkit for incorporating genetics into mainstream medical services: Learning from service development pilots in England

    Get PDF
    Background: As advances in genetics are becoming increasingly relevant to mainstream healthcare, a major challenge is to ensure that these are integrated appropriately into mainstream medical services. In 2003, the Department of Health for England announced the availability of start-up funding for ten 'Mainstreaming Genetics' pilot services to develop models to achieve this. Methods: Multiple methods were used to explore the pilots' experiences of incorporating genetics which might inform the development of new services in the future. A workshop with project staff, an email questionnaire, interviews and a thematic analysis of pilot final reports were carried out. Results: Seven themes relating to the integration of genetics into mainstream medical services were identified: planning services to incorporate genetics; the involvement of genetics departments; the establishment of roles incorporating genetic activities; identifying and involving stakeholders; the challenges of working across specialty boundaries; working with multiple healthcare organisations; and the importance of cultural awareness of genetic conditions. Pilots found that the planning phase often included the need to raise awareness of genetic conditions and services and that early consideration of organisational issues such as clinic location was essential. The formal involvement of genetics departments was crucial to success; benefits included provision of clinical and educational support for staff in new roles. Recruitment and retention for new roles outside usual career pathways sometimes proved difficult. Differences in specialties' working practices and working with multiple healthcare organisations also brought challenges such as the 'genetic approach' of working with families, incompatible record systems and different approaches to health professionals' autonomous practice. 'Practice points' have been collated into a Toolkit which includes resources from the pilots, including job descriptions and clinical tools. These can be customised for reuse by other services. Conclusions: Healthcare services need to translate advances in genetics into benefits for patients. Consideration of the issues presented here when incorporating genetics into mainstream medical services will help ensure that new service developments build on the body of experience gained by the pilots, to provide high quality services for patients with or at risk of genetic conditions

    Cellular senescence in naevi and immortalisation in melanoma: a role for p16?

    Get PDF
    Cellular senescence, the irreversible proliferative arrest seen in somatic cells after a limited number of divisions, is considered a crucial barrier to cancer, but direct evidence for this in vivo was lacking until recently. The best-known form of human cell senescence is attributed to telomere shortening and a DNA-damage response through p53 and p21. There is also a more rapid form of senescence, dependent on the p16-retinoblastoma pathway. p16 (CDKN2A) is a known melanoma susceptibility gene. Here, we use retrovirally mediated gene transfer to confirm that the normal form of senescence in cultured human melanocytes involves p16, since disruption of the p16/retinoblastoma pathway is required as well as telomerase activation for immortalisation. Expression (immunostaining) patterns of senescence mediators and markers in melanocytic lesions provide strong evidence that cell senescence occurs in benign melanocytic naevi (moles) in vivo and does not involve p53 or p21 upregulation, although p16 is widely expressed. In comparison, dysplastic naevi and early (radial growth-phase, RGP) melanomas show less p16 and some p53 and p21 immunostaining. All RGP melanomas expressed p21, suggesting areas of p53-mediated senescence, while most areas of advanced (vertical growth-phase) melanomas lacked both p16 and p21, implying escape from both forms of senescence (immortalisation). Moreover, nuclear p16 but not p21 expression can be induced in human melanocytes by oncogenic BRAF, as found in around 80% of naevi. We conclude that cell senescence can form a barrier to melanoma development. This also provides a potential explanation of why p16 is a melanoma suppressor gene

    Association of IGF1 and KDM5A polymorphisms with performance, fatness and carcass traits in chickens

    Get PDF
    Two functional and positional candidate genes were selected in a region of chicken chromosome 1 (GGA1), based on their biological roles, and also where several quantitative trait loci (QTL) have been mapped and associated with performance, fatness and carcass traits in chickens. The insulin-like growth factor 1 (IGF1) gene has been associated with several physiological functions related to growth. The lysine (K)-specific demethylase 5A (KDM5A) gene participates in the epigenetic regulation of genes involved with the cell cycle. Our objective was to find associations of selected single-nucleotide polymorphisms (SNPs) in these genes with performance, fatness and carcass traits in 165 F chickens from a resource population. In the IGF1 gene, 17 SNPs were detected, and in the KDM5A gene, nine SNPs were detected. IGF1 SNP c. 47673G > A was associated with body weight and haematocrit percentage, and also with feed intake and percentages of abdominal fat and gizzard genotype × sex interactions. KDM5A SNP c. 34208C > T genotype × sex interaction affected body weight, feed intake, percentages of abdominal fat (p = 0. 0001), carcass, gizzard and haematocrit. A strong association of the diplotype × sex interaction (p < 0. 0001) with abdominal fat was observed, and also associations with body weight, feed intake, percentages of carcass, drums and thighs, gizzard and haematocrit. Our findings suggest that the KDM5A gene might play an important role in the abdominal fat deposition in chickens. The IGF1 and KDM5A genes are strong candidates to explain the QTL mapped in this region of GGA1
    corecore