33 research outputs found

    Association of IGF1 and KDM5A polymorphisms with performance, fatness and carcass traits in chickens

    Get PDF
    Two functional and positional candidate genes were selected in a region of chicken chromosome 1 (GGA1), based on their biological roles, and also where several quantitative trait loci (QTL) have been mapped and associated with performance, fatness and carcass traits in chickens. The insulin-like growth factor 1 (IGF1) gene has been associated with several physiological functions related to growth. The lysine (K)-specific demethylase 5A (KDM5A) gene participates in the epigenetic regulation of genes involved with the cell cycle. Our objective was to find associations of selected single-nucleotide polymorphisms (SNPs) in these genes with performance, fatness and carcass traits in 165 F chickens from a resource population. In the IGF1 gene, 17 SNPs were detected, and in the KDM5A gene, nine SNPs were detected. IGF1 SNP c. 47673G > A was associated with body weight and haematocrit percentage, and also with feed intake and percentages of abdominal fat and gizzard genotype Γ— sex interactions. KDM5A SNP c. 34208C > T genotype Γ— sex interaction affected body weight, feed intake, percentages of abdominal fat (p = 0. 0001), carcass, gizzard and haematocrit. A strong association of the diplotype Γ— sex interaction (p < 0. 0001) with abdominal fat was observed, and also associations with body weight, feed intake, percentages of carcass, drums and thighs, gizzard and haematocrit. Our findings suggest that the KDM5A gene might play an important role in the abdominal fat deposition in chickens. The IGF1 and KDM5A genes are strong candidates to explain the QTL mapped in this region of GGA1

    Zebrafish brd2a and brd2b are paralogous members of the bromodomain-ET (BET) family of transcriptional coregulators that show structural and expression divergence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brd2 belongs to the bromodomain-extraterminal domain (BET) family of transcriptional co-regulators, and functions as a pivotal histone-directed recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. Brd2 facilitates expression of genes promoting proliferation and is implicated in apoptosis and in egg maturation and meiotic competence in mammals; it is also a susceptibility gene for juvenile myoclonic epilepsy (JME) in humans. The <it>brd2 </it>ortholog in <it>Drosophila </it>is a maternal effect, embryonic lethal gene that regulates several homeotic loci, including Ultrabithorax. Despite its importance, there are few systematic studies of <it>Brd2 </it>developmental expression in any organism. To help elucidate both conserved and novel gene functions, we cloned and characterized expression of <it>brd2 </it>cDNAs in zebrafish, a vertebrate system useful for genetic analysis of development and disease, and for study of the evolution of gene families and functional diversity in chordates.</p> <p>Results</p> <p>We identify cDNAs representing two paralogous <it>brd2 </it>loci in zebrafish, <it>brd2a </it>on chromosome 19 and <it>brd2b </it>on chromosome 16. By sequence similarity, syntenic and phylogenetic analyses, we present evidence for structural divergence of <it>brd2 </it>after gene duplication in fishes. <it>brd2 </it>paralogs show potential for modular domain combinations, and exhibit distinct RNA expression patterns throughout development. RNA <it>in situ </it>hybridizations in oocytes and embryos implicate <it>brd2a </it>and <it>brd2b </it>as maternal effect genes involved in egg polarity and egg to embryo transition, and as zygotic genes important for development of the vertebrate nervous system and for morphogenesis and differentiation of the digestive tract. Patterns of <it>brd2 </it>developmental expression in zebrafish are consistent with its proposed role in <it>Homeobox </it>gene regulation.</p> <p>Conclusion</p> <p>Expression profiles of zebrafish <it>brd2 </it>paralogs support a role in vertebrate developmental patterning and morphogenesis. Our study uncovers both maternal and zygotic contributions of <it>brd2</it>, the analysis of which may provide insight into the earliest events in vertebrate development, and the etiology of some forms of epilepsy, for which zebrafish is an important model. Knockdowns of <it>brd2 </it>paralogs in zebrafish may now test proposed function and interaction with homeotic loci in vertebrates, and help reveal the extent to which functional novelty or partitioning has occurred after gene duplication.</p

    Critical Role of the Rb Family in Myoblast Survival and Fusion

    Get PDF
    The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival

    A Functional Role of RB-Dependent Pathway in the Control of Quiescence in Adult Epidermal Stem Cells Revealed by Genomic Profiling

    Get PDF
    Continuous cell renewal in mouse epidermis is at the expense of a pool of pluripotent cells that lie in a well defined niche in the hair follicle known as the bulge. To identify mechanisms controlling hair follicle stem cell homeostasis, we developed a strategy to isolate adult bulge stem cells in mice and to define their transcriptional profile. We observed that a large number of transcripts are underexpressed in hair follicle stem cells when compared to non-stem cells. Importantly, the majority of these downregulated genes are involved in cell cycle. Using bioinformatics tools, we identified the E2F transcription factor family as a potential element involved in the regulation of these transcripts. To determine their functional role, we used engineered mice lacking Rb gene in epidermis, which showed increased expression of most E2F family members and increased E2F transcriptional activity. Experiments designed to analyze epidermal stem cell functionality (i.e.: hair regrowth and wound healing) imply a role of the Rb-E2F axis in the control of stem cell quiescence in epidermis

    Stem cells in ectodermal development

    Get PDF
    Tissue-specific stem cells sustain organs for a lifetime through self-renewal and generating differentiated progeny. Although tissue stem cells are established during organogenesis, the precise origin of most adult stem cells in the developing embryo is unclear. Mammalian skin is one of the best-studied epithelial systems containing stem cells to date, however the origin of most of the stem cell populations found in the adult epidermis is unknown. Here, we try to recapitulate the emergence and genesis of an ectodermal stem cell during development until the formation of an adult skin. We ask whether skin stem cells share key transcriptional regulators with their embryonic counterparts and discuss whether embryonic-like stem cells may persist through to adulthood in vivo

    DNA methylation and hormone receptor status in breast cancer.

    No full text
    BACKGROUND: We examined whether differences in tumor DNA methylation were associated with more aggressive hormone receptor-negative breast cancer in an ethnically diverse group of patients in the Breast Cancer Care in Chicago (BCCC) study and using data from The Cancer Genome Atlas (TCGA). RESULTS: DNA was extracted from formalin-fixed, paraffin-embedded samples on 75 patients (21 White, 31 African-American, and 23 Hispanic) (training dataset) enrolled in the BCCC. Hormone receptor status was defined as negative if tumors were negative for both estrogen and progesterone (ER/PR) receptors (N = 22/75). DNA methylation was analyzed at 1505 CpG sites within 807 gene promoters using the Illumina GoldenGate assay. Differential DNA methylation as a predictor of hormone receptor status was tested while controlling for false discovery rate and assigned to the gene closest to the respective CpG site. Next, those genes that predicted ER/PR status were validated using TCGA data with respect to DNA methylation (validation dataset), and correlations between CpG methylation and gene expression were examined. In the training dataset, 5.7 % of promoter mean methylation values (46/807) were associated with receptor status at P < 0.05; for 88 % of these (38/46), hypermethylation was associated with receptor-positive disease. Hypermethylation for FZD9, MME, BCAP31, HDAC9, PAX6, SCGB3A1, PDGFRA, IGFBP3, and PTGS2 genes most strongly predicted receptor-positive disease. Twenty-one of 24 predictor genes from the training dataset were confirmed in the validation dataset. The level of DNA methylation at 19 out 22 genes, for which gene expression data were available, was associated with gene activity. CONCLUSIONS: Higher levels of promoter methylation strongly correlate with hormone receptor positive status of breast tumors. For most of the genes identified in our training dataset as ER/PR receptor status predictors, DNA methylation correlated with stable gene expression level. The predictors performed well when evaluated on independent set of samples, with different racioethnic distribution, thus providing evidence that this set of DNA methylation biomarkers will likely generalize to prospective patient samples

    The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase.

    No full text
    Recent studies have demonstrated that histone methylation can be dynamically regulated through active demethylation. However, no demethylase specific to histone H3 trimethyl-Lys4 (H3K4me3) has been identified. Here we report that the Drosophila melanogaster protein 'little imaginal discs' (Lid), a JmjC domain-containing trithorax group protein, can demethylate H3K4me3. Consistent with its genetic classification, Lid positively regulates Hox gene expression in S2 cells
    corecore