6,480 research outputs found
Stretched Horizon for Non-Supersymmetric Black Holes
We review the idea of stretched horizon for extremal black holes in
supersymmetric string theories, and we compute it for non-supersymmetric black
holes in four dimensions. Only for small masses of the order of the Veneziano
wavelength is the stretched horizon bigger than the event horizon.Comment: 4 pages, 2 figures, to appear in the Proceedings of the VIII Mexican
School, Oaxaca, AI
LabelTranslator: A Tool to Automatically Localize an Ontology
This demo proposal briefly presents LabelTranslator, a system that suggests translations of ontology labels, with the purpose of localizing ontologies. LabelTranslator takes as input an ontology whose labels are described in a source natural language and obtains the most probable translation of each ontology label into a target natural language.Our main contribution is the automatization of this process, which reduces human efforts to localize manually the ontology
Pulsar spin-down: the glitch-dominated rotation of PSR J0537-6910
The young, fast-spinning, X-ray pulsar J0537-6910 displays an extreme glitch
activity, with large spin-ups interrupting its decelerating rotation every ~100
days. We present nearly 13 years of timing data from this pulsar, obtained with
the {\it Rossi X-ray Timing Explorer}. We discovered 22 new glitches and
performed a consistent analysis of all 45 glitches detected in the complete
data span. Our results corroborate the previously reported strong correlation
between glitch spin-up size and the time to the next glitch, a relation that
has not been observed so far in any other pulsar. The spin evolution is
dominated by the glitches, which occur at a rate ~3.5 per year, and the
post-glitch recoveries, which prevail the entire inter-glitch intervals. This
distinctive behaviour provides invaluable insights into the physics of
glitches. The observations can be explained with a multi-component model which
accounts for the dynamics of the neutron superfluid present in the crust and
core of neutron stars. We place limits on the moment of inertia of the
component responsible for the spin-up and, ignoring differential rotation, the
velocity difference it can sustain with the crust. Contrary to its rapid
decrease between glitches, the spin-down rate increased over the 13 years, and
we find the long-term braking index , the only negative
braking index seen in a young pulsar. We briefly discuss the plausible
interpretations of this result, which is in stark contrast to the predictions
of standard models of pulsar spin-down.Comment: Minor changes to match the MNRAS accepted versio
Perspectives in Neutrino Physics: Monochromatic Neutrino Beams
In the last few years spectacular results have been achieved with the
demonstration of non vanishing neutrino masses and flavour mixing. The ultimate
goal is the understanding of the origin of these properties from new physics.
In this road, the last unknown mixing must be determined. If it is
proved to be non-zero, the possibility is open for Charge Conjugation-Parity
(CP) violation in the lepton sector. This will require precision experiments
with a very intense neutrino source. Here a novel method to create a
monochromatic neutrino beam, an old dream for neutrino physics, is proposed
based on the recent discovery of nuclei that decay fast through electron
capture. Such nuclei will generate a monochromatic directional neutrino beam
when decaying at high energy in a storage ring with long straight sections. We
also show that the capacity of such a facility to discover new physics is
impressive, so that fine tuning of the boosted neutrino energy allows precision
measurements of the oscillation parameters even for a mixing as
small as 1 degree. We can thus open a window to the discovery of CP violation
in neutrino oscillations.Comment: 15 pages, 7 figures. Contribution to the proceedings of GUSTAVOFEST -
Symposium in Honour of Gustavo C. Branco: CP Violation and the Flavour
Puzzle, Lisbon, Portugal, 19-20 July 200
Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VI. AK Fornacis - a rare, bright K-type eclipsing binary
We present the results of the combined photometric and spectroscopic analysis
of a bright (V=9.14), nearby (d=31 pc), late-type detached eclipsing binary AK
Fornacis. This P=3.981 d system has not been previously recognised as a
double-lined spectroscopic binary, and this is the first full physical model of
this unique target. With the FEROS, CORALIE and HARPS spectrographs we
collected a number of high-resolution spectra in order to calculate radial
velocities of both components of the binary. Measurements were done with our
own disentangling procedure and the TODCOR technique, and were later combined
with the photometry from the ASAS and SuperWASP archives. We also performed an
atmospheric analysis of the component spectra with the Spectroscopy Made Easy
(SME) package. Our analysis shows that AK For consists of two active, cool
dwarfs having masses of and
M and radii of and
R, slightly less metal abundant than the Sun. Parameters of both
components are well reproduced by the models.
AK For is the brightest system among the known eclipsing binaries with K or M
type stars. Its orbital period is one of the longest and rotational velocities
one of the lowest, which allows us to obtain very precise radial velocity
measurements. The precision in physical parameters we obtained places AK For
among the binaries with the best mass measurements in the literature. It also
fills the gap in our knowledge of stars in the range of 0.5-0.8 M, and
between short and long-period systems. All this makes AK For a unique benchmark
for understanding the properties of low-mass stars.Comment: 9 pages, 11 figures, 3 tables, accpeted for publication in A&
- …