9 research outputs found

    Immunological Basis for the Gender Differences in Murine Paracoccidioides brasiliensis Infection

    Get PDF
    This study aimed to investigate the immunological mechanisms involved in the gender distinct incidence of paracoccidioidomycosis (pcm), an endemic systemic mycosis in Latin America, which is at least 10 times more frequent in men than in women. Then, we compared the immune response of male and female mice to Paracoccidioides brasiliensis infection, as well as the influence in the gender differences exerted by paracoccin, a P. brasiliensis component with carbohydrate recognition property. High production of Th1 cytokines and T-bet expression have been detected in the paracoccin stimulated cultures of spleen cells from infected female mice. In contrast, in similar experimental conditions, cells from infected males produced higher levels of the Th2 cytokines and expressed GATA-3. Macrophages from male and female mice when stimulated with paracoccin displayed similar phagocytic capability, while fungicidal activity was two times more efficiently performed by macrophages from female mice, a fact that was associated with 50% higher levels of nitric oxide production. In order to evaluate the role of sexual hormones in the observed gender distinction, we have utilized mice that have been submitted to gonadectomy followed by inverse hormonal reconstitution. Spleen cells derived from castrated males reconstituted with estradiol have produced higher levels of IFN-γ (1291±15 pg/mL) and lower levels of IL-10 (494±38 pg/mL), than normal male in response to paracoccin stimulus. In contrast, spleen cells from castrated female mice that had been treated with testosterone produced more IL-10 (1284±36 pg/mL) and less IFN-γ (587±14 pg/mL) than cells from normal female. In conclusion, our results reveal that the sexual hormones had a profound effect on the biology of immune cells, and estradiol favours protective responses to P. brasiliensis infection. In addition, fungal components, such as paracoccin, may provide additional support to the gender dimorphic immunity that marks P. brasiliensis infection

    Phenolic Compounds in Wheat Kernels: Genetic and Genomic Studies of Biosynthesis and Regulations

    No full text
    Whole wheat grains are an important source of bioactive components, particularly of phenolic acids and flavonoids. Due to the health-promoting effects of these phenolics, nowadays, the increase of their content in mature kernels is of great interest and a potential target for wheat breeding programs. The biogenesis of phenolics occurs through the general phenylpropanoid pathway, which is ubiquitous in plant cell walls and leads to the synthesis of secondary metabolites that are involved in plant defence and structural support. This chapter reviews the current knowledge in phenylpropanoid chemistry, and the genetic and molecular basis for the biosynthesis of phenolic acids and anthocyanins in wheat grains. Also, advances in assessing genetic variation in the content and composition of these components in wheat germplasm are reviewed, including the effects of different environmental conditions on their accumulation in mature kernels. The recent, ongoing genomic studies are reviewed providing updates on quantitative trait loci and genes involved in the synthesis and accumulation of phenolics in wheat kernels. Finally, the promise and limitations of breeding programs to potentially develop wheat cultivars rich in phenolic components are discussed

    Paracoccidioidomycosis

    No full text
    corecore