28 research outputs found
Collagen-hyaluronic acid scaffolds for adipose tissue engineering.
Three-dimensional (3-D) in vitro models of the mammary gland require a scaffold matrix that supports the development of adipose stroma within a robust freely permeable matrix. 3-D porous collagen-hyaluronic acid (HA: 7.5% and 15%) scaffolds were produced by controlled freeze-drying technique and crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. All scaffolds displayed uniform, interconnected pore structure (total porosity approximately 85%). Physical and chemical analysis showed no signs of collagen denaturation during the formation process. The values of thermal characteristics indicated that crosslinking occurred and that its efficiency was enhanced by the presence of HA. Although the crosslinking reduced the swelling of the strut material in water, the collagen-HA matrix as a whole tended to swell more and show higher dissolution resistance than pure collagen samples. The compressive modulus and elastic collapse stress were higher for collagen-HA composites. All the scaffolds were shown to support the proliferation and differentiation 3T3-L1 preadipocytes while collagen-HA samples maintained a significantly increased proportion of cycling cells (Ki-67+). Furthermore, collagen-HA composites displayed significantly raised Adipsin gene expression with adipogenic culture supplementation for 8 days vs. control conditions. These results indicate that collagen-HA scaffolds may offer robust, freely permeable 3-D matrices that enhance mammary stromal tissue development in vitro.This was supported by the Biotechnology and Biological Sciences Research Council
Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells
The aim of this study consisted on investigating
the influence of silicon substituted hydroxyapatite (Si–HA)
coatings over the human osteoblast-like cell line (SaOS-2)
behaviour. Diatomaceous earth and silica, together with
commercial hydroxyapatite were respectively the silicon
and HA sources used to produce the Si–HA coatings. HA
coatings with 0 wt% of silicon were used as control of the
experiment. Pulsed laser deposition (PLD) was the selected
technique to deposit the coatings. The Si–HA thin films
were characterized by Fourier Transformed Infrared
Spectroscopy (FTIR) demonstrating the efficient transfer of
Si to the HA structure. The in vitro cell culture was
established to assess the cell attachment, proliferation and
osteoblastic activity respectively by, Scanning Electron
Microscopy (SEM), DNA and alkaline phosphatase (ALP)
quantification. The SEM analysis demonstrated a similar
adhesion behaviour of the cells on the tested materials and
the maintenance of the typical osteoblastic morphology
along the time of culture. The Si–HA coatings did not
evidence any type of cytotoxic behaviour when compared
with HA coatings. Moreover, both the proliferation rate
and osteoblastic activity results showed a slightly better
performance on the Si–HA coatings from diatoms than on
the Si–HA from silica.This work was supported by the UE-Interreg IIIA (SP1.P151/03) Proteus project and Xunta de Galicia ( Projects: 2006/12 and PGIDITO5PXIC30301PN)
Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating
In this study, we designed a novel drug-eluting coating for vascular implants consisting of a core coating of the anti-proliferative drug docetaxel (DTX) and a shell coating of the platelet glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21. The core/shell structure was sprayed onto the surface of 316L stainless steel stents using a coaxial electrospray process with the aim of creating a coating that exhibited a differential release of the two drugs. The prepared stents displayed a uniform coating consisting of nano/micro particles. In vitro drug release experiments were performed, and we demonstrated that a biphasic mathematical model was capable of capturing the data, indicating that the release of the two drugs conformed to a diffusion-controlled release system. We demonstrated that our coating was capable of inhibiting the adhesion and activation of platelets, as well as the proliferation and migration of smooth muscle cells (SMCs), indicating its good biocompatibility and anti-proliferation qualities. In an in vivo porcine coronary artery model, the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents were observed to promote re-endothelialization and inhibit neointimal hyperplasia. This core/shell particle-coated stent may serve as part of a new strategy for the differential release of different functional drugs to sequentially target thrombosis and in-stent restenosis during the vascular repair process and ensure rapid re-endothelialization in the field of cardiovascular disease