10 research outputs found

    High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor

    Get PDF
    We present the design of a concentric tube (CT) reactor for roll-to-roll chemical vapor deposition (CVD) on flexible substrates, and its application to continuous production of graphene on copper foil. In the CTCVD reactor, the thin foil substrate is helically wrapped around the inner tube, and translates through the gap between the concentric tubes. We use a bench-scale prototype machine to synthesize graphene on copper substrates at translation speeds varying from 25 mm/min to 500 mm/min, and investigate the influence of process parameters on the uniformity and coverage of graphene on a continuously moving foil. At lower speeds, high-quality monolayer graphene is formed; at higher speeds, rapid nucleation of small graphene domains is observed, yet coalescence is prevented by the limited residence time in the CTCVD system. We show that a smooth isothermal transition between the reducing and carbon-containing atmospheres, enabled by injection of the carbon feedstock via radial holes in the inner tube, is essential to high-quality roll-to-roll graphene CVD. We discuss how the foil quality and microstructure limit the uniformity of graphene over macroscopic dimensions. We conclude by discussing means of scaling and reconfiguring the CTCVD design based on general requirements for 2-D materials manufacturing

    Engineering of micro- and nanostructured surfaces with anisotropic geometries and properties

    No full text
    Widespread approaches to fabricate surfaces with robust micro- and nanostructured topographies have been stimulated by opportunities to enhance interface performance by combining physical and chemical effects. In particular, arrays of asymmetric surface features, such as arrays of grooves, inclined pillars, and helical protrusions, have been shown to impart unique anisotropy in properties including wetting, adhesion, thermal and/or electrical conductivity, optical activity, and capability to direct cell growth. These properties are of wide interest for applications including energy conversion, microelectronics, chemical and biological sensing, and bioengineering. However, fabrication of asymmetric surface features often pushes the limits of traditional etching and deposition techniques, making it challenging to produce the desired surfaces in a scalable and cost-effective manner. We review and classify approaches to fabricate arrays of asymmetric 2D and 3D surface features, in polymers, metals, and ceramics. Analytical and empirical relationships among geometries, materials, and surface properties are discussed, especially in the context of the applications mentioned above. Further, opportunities for new fabrication methods that combine lithography with principles of self-assembly are identified, aiming to establish design principles for fabrication of arbitrary 3D surface textures over large areas. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth.

    No full text
    The properties of carbon nanotube (CNT) networks and analogous materials comprising filamentary nanostructures are governed by the intrinsic filament properties and their hierarchical organization and interconnection. As a result, direct knowledge of the collective dynamics of CNT synthesis and self-organization is essential to engineering improved CNT materials for applications such as membranes and thermal interfaces. Here, we use real-time environmental transmission electron microscopy (E-TEM) to observe nucleation and self-organization of CNTs into vertically aligned forests. Upon introduction of the carbon source, we observe a large scatter in the onset of nucleation of individual CNTs and the ensuing growth rates. Experiments performed at different temperatures and catalyst particle densities show the critical role of CNT density on the dynamics of self-organization; low-density CNT nucleation results in the CNTs becoming pinned to the substrate and forming random networks, whereas higher density CNT nucleation results in self-organization of the CNTs into bundles that are oriented perpendicular to the substrate. We also find that mechanical coupling between growing CNTs alters their growth trajectory and shape, causing significant deformations, buckling, and defects in the CNT walls. Therefore, it appears that CNT-CNT coupling not only is critical for self-organization but also directly influences CNT quality and likely the resulting properties of the forest. Our findings show that control of the time-distributed kinetics of CNT nucleation and bundle formation are critical to manufacturing well-organized CNT assemblies and that E-TEM can be a powerful tool to investigate the mesoscale dynamics of CNT networks

    Direct fabrication of graphene on SiO 2 enabled by thin film stress engineering

    No full text
    We demonstrate direct production of graphene on SiO 2 by CVD growth of graphene at the interface between a Ni film and the SiO 2 substrate, followed by dry mechanical delamination of the Ni using adhesive tape. This result is enabled by understanding of the competition between stress evolution and microstructure development upon annealing of the Ni prior to the graphene growth step. When the Ni film remains adherent after graphene growth, the balance between residual stress and adhesion governs the ability to mechanically remove the Ni after the CVD process. In this study the graphene on SiO 2 comprises micron-scale domains, ranging from monolayer to multilayer. The graphene has >90% coverage across centimeter-scale dimensions, limited by the size of our CVD chamber. Further engineering of the Ni film microstructure and stress state could enable manufacturing of highly uniform interfacial graphene followed by clean mechanical delamination over practically indefinite dimensions. Moreover, our findings suggest that preferential adhesion can enable production of 2-D materials directly on application-relevant substrates. This is attractive compared to transfer methods, which can cause mechanical damage and leave residues behind

    Machines and processes for continuous manufacturing of aligned carbon nanotubes for tough and multifunctional interface layers

    No full text
    Owing to the exceptional and anisotropic properties of carbon nanotubes (CNTs), vertically aligned CNT "forests" are a highly attractive thin film material for multifunctional enhancement of composite interfaces. We present two designs for continuous manufacturing of aligned CNT forests, wherein high-quality CNT forests are grown on continuously-fed and recirculating substrates. Subsequent transfer printing of CNT forests to aerospace prepregs achieves significant enhancement in interlaminar toughness and demonstrates scalability and integrability for a wide variety of material systems

    2H-NMR Spectroscopy of Solids and Liquid Crystals

    No full text
    corecore