37,180 research outputs found
Box traps on an atom chip for one-dimensional quantum gases
We present the implementation of tailored trapping potentials for ultracold
gases on an atom chip. We realize highly elongated traps with box-like
confinement along the long, axial direction combined with conventional harmonic
confinement along the two radial directions. The design, fabrication and
characterization of the atom chip and the box traps is described. We load
ultracold (K) clouds of Rb in a box trap, and demonstrate
Bose-gas focusing as a means to characterize these atomic clouds in arbitrarily
shaped potentials. Our results show that box-like axial potentials on atom
chips are very promising for studies of one-dimensional quantum gases.Comment: 9 pages 4 figure
Yang-Yang thermodynamics on an atom chip
We investigate the behavior of a weakly interacting nearly one-dimensional
(1D) trapped Bose gas at finite temperature. We perform in situ measurements of
spatial density profiles and show that they are very well described by a model
based on exact solutions obtained using the Yang-Yang thermodynamic formalism,
in a regime where other, approximate theoretical approaches fail. We use
Bose-gas focusing [Shvarchuck etal., Phys. Rev. Lett. 89, 270404 (2002)] to
probe the axial momentum distribution of the gas, and find good agreement with
the in situ results.Comment: extended introduction and conclusions, and minor changes throughout;
accepted for publication in Phys. Rev. Let
Thermoluminescence of zircon: a kinetic model
The mineral zircon, ZrSiO4, belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such amodel. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time annealing at a given temperature. (iv) Heating of the irradiated sample to simulate TL experiments both after laboratory and natural irradiation.
The input parameters of the model, such as the types and concentrations of the TL centres and the energy distributions of the hole and electron traps, were obtained by analysing the experimental data on fading of the TL-emission spectra of samples from different geological locations. Electron paramagnetic resonance (EPR) data were used to establish the nature of the TL centres. Glow curves and 3D TL emission spectra are simulated and compared with the experimental data on time-dependent TL fading. The saturation and annealing behaviour of filled trap concentrations has been considered in the framework of the proposed kinetic model and comparedwith the EPR data associated with the rare-earth ions Tb3+ and Dy3+, which play a crucial role as hole traps and recombination centres. Inaddition, the behaviour of some of the SiOmn− centres has been compared with simulation results.
Three-dimensional character of atom-chip-based rf-dressed potentials
We experimentally investigate the properties of radio-frequency-dressed
potentials for Bose-Einstein condensates on atom chips. The three-dimensional
potential forms a connected pair of parallel waveguides. We show that
rf-dressed potentials are robust against the effect of small magnetic-field
variations on the trap potential. Long-lived dipole oscillations of condensates
induced in the rf-dressed potentials can be tuned to a remarkably low damping
rate. We study a beam-splitter for Bose-Einstein condensates and show that a
propagating condensate can be dynamically split in two vertically separated
parts and guided along two paths. The effect of gravity on the potential can be
tuned and compensated for using a rf-field gradient.Comment: 9 pages, 7 figure
Effective action in a higher-spin background
We consider a free massless scalar field coupled to an infinite tower of
background higher-spin gauge fields via minimal coupling to the traceless
conserved currents. The set of Abelian gauge transformations is deformed to the
non-Abelian group of unitary operators acting on the scalar field. The gauge
invariant effective action is computed perturbatively in the external fields.
The structure of the various (divergent or finite) terms is determined. In
particular, the quadratic part of the logarithmically divergent (or of the
finite) term is expressed in terms of curvatures and related to conformal
higher-spin gravity. The generalized higher-spin Weyl anomalies are also
determined. The relation with the theory of interacting higher-spin gauge
fields on anti de Sitter spacetime via the holographic correspondence is
discussed.Comment: 40 pages, Some errors and typos corrected, Version published in JHE
Low-Frequency Quantum Oscillations due to Strong Electron Correlations
The normal-state energy spectrum of the two-dimensional - model in a
homogeneous perpendicular magnetic field is investigated. The density of states
at the Fermi level as a function of the inverse magnetic field
reveals oscillations in the range of hole concentrations . The
oscillations have both high- and low-frequency components. The former
components are connected with large Fermi surfaces, while the latter with van
Hove singularities in the Landau subbands, which traverse the Fermi level with
changing . The singularities are related to bending the Landau subbands due
to strong electron correlations. Frequencies of these components are of the
same order of magnitude as quantum oscillation frequencies observed in
underdoped cuprates.Comment: 10 pages, 3 figures, Proc. NSS-2013, Yalta. arXiv admin note: text
overlap with arXiv:1308.056
Multifunctional Structural Supercapacitor Composites Based on Carbon Aerogel Modified High Performance Carbon Fiber Fabric
It is well documented that bedrest has adverse outcomes for hospitalized patients. This is especially true for critically ill patients due to life support measures, invasive catheters, and mechanical ventilation. Consequences associated with bedrest in critical care patients include venous thromboembolism, ventilator associated pneumonia, pressure ulcer development, and muscle weakness. Respiratory muscle weakness is associated with prolonged ventilator support and delayed extubation. The Awakening and Breathing Coordination, Delirium Monitoring and Management, and Early Mobility (ABCDE) bundle uses evidence based practice to prevent and treat ICU acquired delirium and weakness. The bundle aims to do this by standardizing care processes in collaboration with the ICU team to promote early mobility in ventilated patients. The purpose of this research study was to determine if the implementation of an early mobility protocol decreased the number of ventilator days for patients who receive mechanical ventilation. A retrospective chart review was conducted at a 16 bed ICU. Group A included 30 subjects (n=30) who were treated pre implementation of the ABCDE bundle and Group B included 39 (n=39) subjects who were treated post implementation of the ABCDE bundle. There were less average ventilator days found in Group A in comparison to Group B. Additionally, there was a significant difference found in the ICU length of stay pre implementation (M=9.4, SD=4.4) and post implementation (M=5.7, SD=2.6) of the ABCDE bundle for early mobility, t (65) =4.3, p = 0.00005. The APRN can use the evidence in the ABCDE bundle to guide care to critically ill patients that are mechanically ventilated. Utilizing the ABCDE bundle additionally allows the APRN to be instrumental in improving patient outcomes through interdisciplinary collaboration
- …