1,856 research outputs found

    Low rate of rhesus immunization from rh- incompatible blood transfusions during liver and heart transplant surgery

    Get PDF
    Transfusion of one unit or more of Rh-positive red blood cells normally causes circulating anti-D antibody to appear 2-6 months later in 80-95% of Rh persons. We asked whether transplant immunosuppression with cyclosporine and corticosteroids affects Rh immunizaĀ¬tion. Nineteen Rh" liver, heart, and heart-lung transplant recipients received 3ā€”153 (median: 10) units of Rh+ RBCs at surgery and were tested for anti-D >2 months later. Three patients developed anti-D at 11ā€”15 days; one may have had an unusually rapid primary immune response and two were secondary to previous exposure by pregnancy. None of the other 16 patients had anti-D when tested 2.5-51 months later (13 patients, >11.5 months). This low rate of Rhesus immunization in association with cyclosporine immunosuppression allows greater flexibility in meeting the transfusion needs of Rh- liver and heart transplant patients. Caution is still advised in young females and in patients who may have been previously exposed to Rh+ RBCs by transfusion or by pregnancy prior to the availability of perinatal Rh immune globulin twenty years ago. Other humoral immune responses to some vaccines or infectious agents may also be impaired in transplant patientsĀ© 1989 by The Williams and Wilkins Co

    Bioinspired Processing:Complex Coacervates as Versatile Inks for 3D Bioprinting

    Get PDF
    3D bioprinting is a powerful fabrication technique in biomedical engineering, which is currently limited by the number of available materials that meet all physicochemical and cytocompatibility requirements for biomaterial inks. Inspired by the key role of coacervations in the extrusion and spinning of many natural materials, hyaluronic acid-chitosan complex coacervates are proposed here as tunable biomaterial inks. Complex coacervates are obtained through an associative liquid-liquid phase separation driven by electrostatic attraction between oppositely charged macromolecules. They offer bioactive properties as well as facile modulation of their mechanical properties through mild physicochemical changes in the environment, rendering them attractive for 3D bioprinting. Fine-tuning the salt concentration, pH, and molecular weight of the constituent polymers results in biomaterial inks that are printable in air and water. The biomaterial ink, initially a viscoelastic fluid, transitions into a viscoelastic solid upon printing due to dehydration (for printing in air) or due to a change in pH and ionic composition (for printing in water). Consequently, scaffolds printed using the complex coacervate inks are stable without the need for post-printing processing. Cell culture scaffolds fabricated in this way are cytocompatible and show long-term topological stability. These results pave the way to a new class of easy-to-handle tunable biomaterials for biofabrication

    Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device.

    Full text link
    Circulating Tumour Cells (CTCs) are promising cancer biomarkers. Several methods have been developed to isolate CTCs from blood samples. However, the isolation of melanoma CTCs is very challenging as a result of their extraordinary heterogeneity, which has hindered their biological and clinical study. Thus, methods that isolate CTCs based on their physical properties, rather than surface marker expression, such as microfluidic devices, are greatly needed in melanoma. Here, we assessed the ability of the slanted spiral microfluidic device to isolate melanoma CTCs via label-free enrichment. We demonstrated that this device yields recovery rates of spiked melanoma cells of over 80% and 55%, after one or two rounds of enrichment, respectively. Concurrently, a two to three log reduction of white blood cells was achieved with one or two rounds of enrichment, respectively. We characterised the isolated CTCs using multimarker flow cytometry, immunocytochemistry and gene expression. The results demonstrated that CTCs from metastatic melanoma patients were highly heterogeneous and commonly expressed stem-like markers such as PAX3 and ABCB5. The implementation of the slanted microfluidic device for melanoma CTC isolation enables further understanding of the biology of melanoma metastasis for biomarker development and to inform future treatment approaches

    A Multimodality Myocardial Perfusion Phantom:Initial Quantitative Imaging Results

    Get PDF
    This proof-of-concept study explores the multimodal application of a dedicated cardiac flow phantom for ground truth contrast measurements in dynamic myocardial perfusion imaging with CT, PET/CT, and MRI. A 3D-printed cardiac flow phantom and flow circuit mimics the shape of the left ventricular cavity (LVC) and three myocardial regions. The regions are filled with tissue-mimicking materials and the flow circuit regulates and measures contrast flow through LVC and myocardial regions. Normal tissue perfusion and perfusion deficits were simulated. Phantom measurements in PET/CT, CT, and MRI were evaluated with clinically used hardware and software. The reference arterial input flow was 4.0 L/min and myocardial flow 80 mL/min, corresponding to myocardial blood flow (MBF) of 1.6 mL/g/min. The phantom demonstrated successful completion of all processes involved in quantitative, multimodal myocardial perfusion imaging (MPI) applications. Contrast kinetics in time intensity curves were in line with expectations for a mimicked perfusion deficit (38 s vs. 32 s in normal tissue). Derived MBF in PET/CT and CT led to under- and overestimation of reference flow of 0.9 mL/g/min and 4.5 mL/g/min, respectively. Simulated perfusion deficit (0.8 mL/g/min) in CT resulted in MBF of 2.8 mL/g/min. We successfully performed initial, quantitative perfusion measurements with a dedicated phantom setup utilizing clinical hardware and software. These results showcase the multimodal phantomā€™s potential.</p

    A Multimodality Myocardial Perfusion Phantom:Initial Quantitative Imaging Results

    Get PDF
    This proof-of-concept study explores the multimodal application of a dedicated cardiac flow phantom for ground truth contrast measurements in dynamic myocardial perfusion imaging with CT, PET/CT, and MRI. A 3D-printed cardiac flow phantom and flow circuit mimics the shape of the left ventricular cavity (LVC) and three myocardial regions. The regions are filled with tissue-mimicking materials and the flow circuit regulates and measures contrast flow through LVC and myocardial regions. Normal tissue perfusion and perfusion deficits were simulated. Phantom measurements in PET/CT, CT, and MRI were evaluated with clinically used hardware and software. The reference arterial input flow was 4.0 L/min and myocardial flow 80 mL/min, corresponding to myocardial blood flow (MBF) of 1.6 mL/g/min. The phantom demonstrated successful completion of all processes involved in quantitative, multimodal myocardial perfusion imaging (MPI) applications. Contrast kinetics in time intensity curves were in line with expectations for a mimicked perfusion deficit (38 s vs. 32 s in normal tissue). Derived MBF in PET/CT and CT led to under- and overestimation of reference flow of 0.9 mL/g/min and 4.5 mL/g/min, respectively. Simulated perfusion deficit (0.8 mL/g/min) in CT resulted in MBF of 2.8 mL/g/min. We successfully performed initial, quantitative perfusion measurements with a dedicated phantom setup utilizing clinical hardware and software. These results showcase the multimodal phantomā€™s potential

    Effectiveness of a Comprehensive Health Literacy Consultation Skills Training for Undergraduate Medical Students:A Randomized Controlled Trial

    Get PDF
    Comprehensible communication by itself is not sufficient to overcome health literacy related problems. Future doctors need a larger scope of capacities in order to strengthen a patient's autonomy, participation, and self-management abilities. To date, such comprehensive training-interventions are rarely embedded in curricula, nor systematically evaluated. We assessed whether comprehensive training increased these health literacy competencies, in a randomized controlled trial (RCT), with a waiting list condition. Participants were international undergraduate medical students of a Dutch medical faculty (intervention: 39; control: 40). The 11-h-training-intervention encompassed a health literacy lecture and five interactive small-group sessions to practise gathering information and providing comprehensible information, shared decision-making, and enabling of self-management using role-play and videotaped conversations. We assessed self-reported competencies (knowledge and awareness of health literacy, attitude, self-efficacy, and ability to use patient-centred communication techniques) at baseline, after a five and ten-week follow-up. We compared students' competencies using multi-level analysis, adjusted for baseline. As validation, we evaluated demonstrated skills in videotaped consultations for a subsample. The group of students who received the training intervention reported significantly greater health literacy competencies, which persisted up to five weeks afterwards. Increase was greatest for providing comprehensible information (B: 1.50; 95% confidence interval, CI 1.15 to 1.84), shared decision-making (B: 1.08; 95% CI 0.60 to 1.55), and self-management (B: 1.21; 95% CI 0.61 to 1.80). Effects regarding demonstrated skills confirmed self-rated competency improvement. This training enhanced a larger scope of health literacy competences and was well received by medical students. Implementation and further evaluation of this training in education and clinical practice can support sustainable health literacy capacity building of future doctors and contribute to better patient empowerment and outcomes of consultations

    Analyzing Recent Coronary Heart Disease Mortality Trends in Tunisia between 1997 and 2009.

    Get PDF
    BACKGROUND: In Tunisia, Cardiovascular Diseases are the leading causes of death (30%), 70% of those are coronary heart disease (CHD) deaths and population studies have demonstrated that major risk factor levels are increasing. OBJECTIVE: To explain recent CHD trends in Tunisia between 1997 and 2009. METHODS: DATA SOURCES: Published and unpublished data were identified by extensive searches, complemented with specifically designed surveys. ANALYSIS: Data were integrated and analyzed using the previously validated IMPACT CHD policy model. Data items included: (i)number of CHD patients in specific groups (including acute coronary syndromes, congestive heart failure and chronic angina)(ii) uptake of specific medical and surgical treatments, and(iii) population trends in major cardiovascular risk factors (smoking, total cholesterol, systolic blood pressure (SBP), body mass index (BMI), diabetes and physical inactivity). RESULTS: CHD mortality rates increased by 11.8% for men and 23.8% for women, resulting in 680 additional CHD deaths in 2009 compared with the 1997 baseline, after adjusting for population change. Almost all (98%) of this rise was explained by risk factor increases, though men and women differed. A large rise in total cholesterol level in men (0.73 mmol/L) generated 440 additional deaths. In women, a fall (-0.43 mmol/L), apparently avoided about 95 deaths. For SBP a rise in men (4 mmHg) generated 270 additional deaths. In women, a 2 mmHg fall avoided 65 deaths. BMI and diabetes increased substantially resulting respectively in 105 and 75 additional deaths. Increased treatment uptake prevented about 450 deaths in 2009. The most important contributions came from secondary prevention following Acute Myocardial Infarction (AMI) (95 fewer deaths), initial AMI treatments (90), antihypertensive medications (80) and unstable angina (75). CONCLUSIONS: Recent trends in CHD mortality mainly reflected increases in major modifiable risk factors, notably SBP and cholesterol, BMI and diabetes. Current prevention strategies are mainly focused on treatments but should become more comprehensive

    Effect of Modification of the NI Artificial Diet on the Biological Fitness Parameters of Mass Reared Western Tarnished Plant Bug, Lygus hesperus

    Get PDF
    The NI artificial diet is the only known successful diet for mass rearing the western tarnished plant bug, Lygus hesperus Knight (Hemiptera: Miridae). This diet has been used for more than a decade. However, because it contains cooked chicken egg, and thus requires laborious preparation (Cohen 2000), this diet is difficult to use. Three modifications (D1, D2, D3) of the NI diet were investigated in hopes of developing a more easily prepared diet that avoids the cooked egg and improves mass fitness parameters of L. hesperus. The modified D3 diet, containing autoclaved chicken egg yolk based component, had the highest egg/cage/day production (13120 Ā± 812 SE). This was significantly greater than diets D1, containing autoclaved dry chicken egg yolk based component (9027 Ā± 811 SE), D2, containing autoclaved chicken egg white based component (8311 Ā± 628 SE), and NI, which contained autoclaved chicken egg yolk + cooked egg diet (7890 Ā± 761 SE). Significant differences were observed in the weights of all developmental stages except for eggs and first instar nymphs. Higher rates of fertility, hatchability, and low mortality in nymphs during the first instar were also obtained in the modified D3 diet. The results clearly indicated that the D3 diet provided an opportunity to significantly reduce rearing cost by avoiding time-consuming issues with preparation of a cooked egg diet. This should result in an increase in production capacity and a reduction in production costs

    A novel preclinical model for rheumatoid arthritis research

    Get PDF
    Based on increasing knowledge on the pathogenesis of rheumatoid arthritis (RA), more and more potential therapeutics have been developed. To evaluate their therapeutic efficacy, safety and toxicity, appropriate animal models are required. Although rodent models of RA have been extensively used for preclinical evaluation, the differences between rodents and humans limit their usability for some species-specific therapeutics. Therefore, autoimmune arthritis developed in a non-human primate with essential hallmarks of RA will be an alternative model for preclinical studies
    • ā€¦
    corecore