29 research outputs found

    Fungal infection-related mortality versus total mortality as an outcome in trials of antifungal agents

    Get PDF
    BACKGROUND: Disease specific mortality is often used as outcome rather than total mortality in clinical trials. This approach assumes that the classification of cause of death is unbiased. We explored whether use of fungal infection-related mortality as outcome rather than total mortality leads to bias in trials of antifungal agents in cancer patients. METHODS: As an estimate of bias we used relative risk of death in those patients the authors considered had not died from fungal infection. Our sample consisted of 69 trials included in four systematic reviews of prophylactic or empirical antifungal treatment in patients with cancer and neutropenia we have published previously. RESULTS: Thirty trials met the inclusion criteria. The trials comprised 6130 patients and 869 deaths, 220 (25%) of which were ascribed to fungal infection. The relative risk of death was 0.85 (95% CI 0.75–0.96) for total mortality, 0.57 (95% CI 0.44–0.74) for fungal mortality, and 0.95 (95% CI 0.82–1.09) for mortality among those who did not die from fungal infection. CONCLUSION: We could not support the hypothesis that use of disease specific mortality introduces bias in antifungal trials on cancer patients as our estimate of the relative risk for mortality in those who survived the fungal infection was not increased. We conclude that it seems to be reliable to use fungal mortality as the primary outcome in trials of antifungal agents. Data on total mortality should be reported as well, however, to guard against the possible introduction of harmful treatments

    Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy?

    Get PDF
    The aquatic macrophyte Stratiotes aloides Linnaeus, which has recently received attention in studies on allelopathy, has been shown to suppress phytoplankton growth. In the Netherlands, S. aloides often co-occurs with floating filamentous algae. However, filamentous algae are generally absent in close proximity to S. aloides, resulting in gaps in filamentous algae mats. We analyzed whether those gaps may be caused by allelopathic substances excreted by S. aloides or by nutrient depletion. We studied in a field survey the colonization of natural S. aloides by filamentous algae and determined in situ nutrient concentrations in natural S. aloides stands. To analyze the relative importance of allelopathy and nutrient competition in the interaction between S. aloides and filamentous algae, we carried out field experiments. Introduction of artificial (non-allelopathic) plants in natural S. aloides stands enabled us to compare the colonization by filamentous algae of both Stratiotes sp. and artificial plants. The filamentous algae were absent in close vicinity to S. aloides. Significantly lower concentrations of ortho-phosphate and potassium were observed close to S. aloides as compared with the filamentous algae. In the field experiments the artificial plants were rapidly colonized by filamentous algae, mainly Cladophera Kützing and Spirogyra Link, while all natural plants remained free of such algae. Additionally, most nutrient concentrations did not significantly differ in the proximity of artificial or natural stands of S. aloides. The concentrations of the major growth-limiting nutrients, phosphate and nitrate, were significantly higher and nonlimiting in natural Stratiotes stands. Our main conclusion is that, although allelopathic interactions between S. aloides and filamentous algae do occur under natural conditions, nutrient competition between the two can also be an important factor.

    A specific neural substrate for perceiving facial expressions of disgust

    No full text
    Recognition of facial expressions is critical to our appreciation of the social and physical environment, with separate emotions having distinct facial expressions. Perception of fearful facial expressions has been extensively studied, appearing to depend upon the amygdala. Disgust-literally 'bad taste'-is another important emotion, with a distinct evolutionary history, and is conveyed by a characteristic facial expression. We have used functional magnetic resonance imaging (fMRI) to examine the neural substrate for perceiving disgust expressions. Normal volunteers were presented with faces showing mild or strong disgust or fear. Cerebral activation in response to these stimuli was contrasted with that for neutral faces. Results for fear generally confirmed previous positron emission tomography findings of amygdala involvement. Both strong and mild expressions of disgust activated anterior insular cortex but not the amygdala; strong disgust also activated structures linked to a limbic cortico-striatal-thalamic circuit. The anterior insula is known to be involved in responses to offensive tastes. The neural response to facial expressions of disgust in others is thus closely related to appraisal of distasteful stimuli
    corecore