1,160 research outputs found

    Trypanosoma cruzi Immune Response Modulation Decreases Microbiota in Rhodnius prolixus Gut and Is Crucial for Parasite Survival and Development

    Get PDF
    Trypanosoma cruzi in order to complete its development in the digestive tract of Rhodnius prolixus needs to overcome the immune reactions and microbiota trypanolytic activity of the gut. We demonstrate that in R. prolixus following infection with epimastigotes of Trypanosoma cruzi clone Dm28c and, in comparison with uninfected control insects, the midgut contained (i) fewer bacteria, (ii) higher parasite numbers, and (iii) reduced nitrite and nitrate production and increased phenoloxidase and antibacterial activities. In addition, in insects pre-treated with antibiotic and then infected with Dm28c, there were also reduced bacteria numbers and a higher parasite load compared with insects solely infected with parasites. Furthermore, and in contrast to insects infected with Dm28c, infection with T. cruzi Y strain resulted in a slight decreased numbers of gut bacteria but not sufficient to mediate a successful parasite infection. We conclude that infection of R. prolixus with the T. cruzi Dm28c clone modifies the host gut immune responses to decrease the microbiota population and these changes are crucial for the parasite development in the insect gut

    Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhodnius prolixus </it>is a blood-feeding insect that can transmit <it>Trypanosoma cruzi </it>and <it>Trypanosoma rangeli </it>to vertebrate hosts. Recently, genomic resources for invertebrate vectors of human pathogens have increased significantly, and <it>R. prolixus </it>has been one of the main species studied among the triatomines. However, the paucity of information on many of the fundamental molecular aspects of this species limits the use of the available genomic information. The present study aimed to facilitate gene expression studies by identifying the most suitable reference genes for the normalization of mRNA expression data from qPCR.</p> <p>Results</p> <p>The expression stability of five candidate reference genes (<it>18S </it>rRNA, <it>GAPDH</it>, β-actin, α-tubulin and ribosomal protein <it>L26</it>) was evaluated by qPCR in two tissues (salivary gland and intestine) and under different physiological conditions: before and after blood feeding and after infection with <it>T. cruzi </it>or <it>T. rangeli</it>. The results were analyzed with three software programs: geNorm, NormFinder and BestKeeper. All of the evaluated candidate genes proved to be acceptable as reference genes, but some were found to be more appropriate depending on the experimental conditions. <it>18S</it>, <it>GAPDH </it>and α-tubulin showed acceptable stability for studies in all of the tissues and experimental conditions evaluated. β-actin, one of the most widely used reference genes, was confirmed to be one of the most suitable reference genes in studies with salivary glands, but it had the lowest expression stability in the intestine after insect blood feeding. <it>L26 </it>was identified as the poorest reference gene in the studies performed.</p> <p>Conclusions</p> <p>The expression stability of the genes varies in different tissue samples and under different experimental conditions. The results provided by three statistical packages emphasize the suitability of all five of the tested reference genes in both the crop and the salivary glands with a few exceptions. The results emphasise the importance of validating reference genes for qRT-PCR analysis in <it>R. prolixus </it>studies.</p

    The perinatal risk index: Early risks experienced by domestic adoptees in the United States

    Get PDF
    We aimed to assess comprehensively the prevalence of perinatal risks experienced by a potentially high-risk yet understudied population of children domestically adopted in the United States. Data are from participant report and medical records from mothers (n = 580) who completed a domestic adoption placement with nonrelatives at or near birth (Mean placement age = 7 days).We describe a comprehensive measure of perinatal risks, including divergences from previous assessment tools and the incorporation of multiple reporters, and report the prevalence of various types of perinatal risks. The prevalence of each specific risk factor was generally low, although several risks were more prevalent in this sample than estimates from nationally representative publicly available data. Nearly the entire sample (99%) experienced some type of risk exposure. Birth mothers who placed their children for adoption domestically in the US experience higher levels of perinatal risks than the national average, but not for all specific types of risk. Thus, the developmental trajectories of children adopted domestically may systematically differ from the general population to the extent that these specific perinatal risks impact development

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
    corecore