49 research outputs found

    Common Functional Correlates of Head-Strike Behavior in the Pachycephalosaur Stegoceras validum (Ornithischia, Dinosauria) and Combative Artiodactyls

    Get PDF
    BACKGROUND: Pachycephalosaurs were bipedal herbivorous dinosaurs with bony domes on their heads, suggestive of head-butting as seen in bighorn sheep and musk oxen. Previous biomechanical studies indicate potential for pachycephalosaur head-butting, but bone histology appears to contradict the behavior in young and old individuals. Comparing pachycephalosaurs with fighting artiodactyls tests for common correlates of head-butting in their cranial structure and mechanics. METHODS/PRINCIPAL FINDINGS: Computed tomographic (CT) scans and physical sectioning revealed internal cranial structure of ten artiodactyls and pachycephalosaurs Stegoceras validum and Prenocephale prenes. Finite element analyses (FEA), incorporating bone and keratin tissue types, determined cranial stress and strain from simulated head impacts. Recursive partition analysis quantified strengths of correlation between functional morphology and actual or hypothesized behavior. Strong head-strike correlates include a dome-like cephalic morphology, neurovascular canals exiting onto the cranium surface, large neck muscle attachments, and dense cortical bone above a sparse cancellous layer in line with the force of impact. The head-butting duiker Cephalophus leucogaster is the closest morphological analog to Stegoceras, with a smaller yet similarly rounded dome. Crania of the duiker, pachycephalosaurs, and bighorn sheep Ovis canadensis share stratification of thick cortical and cancellous layers. Stegoceras, Cephalophus, and musk ox crania experience lower stress and higher safety factors for a given impact force than giraffe, pronghorn, or the non-combative llama. CONCLUSIONS/SIGNIFICANCE: Anatomy, biomechanics, and statistical correlation suggest that some pachycephalosaurs were as competent at head-to-head impacts as extant analogs displaying such combat. Large-scale comparisons and recursive partitioning can greatly refine inference of behavioral capability for fossil animals

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9g€¯mm to global mean sea level, with the rate of mass loss rising from 105g€¯Gtg€¯yr-1 between 1992 and 1996 to 372g€¯Gtg€¯yr-1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9g€¯Gtg€¯yr-1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86g€¯Gtg€¯yr-1 in 2017 to 444g€¯Gtg€¯yr-1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9g€¯Gtg€¯yr-1) and, to a lesser extent, from the Antarctic Peninsula (13±5g€¯Gtg€¯yr-1). East Antarctica remains close to a state of balance, with a small gain of 3±15g€¯Gtg€¯yr-1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at 10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9 mm to global mean sea level, with the rate of mass loss rising from 105 Gt yr−1 between 1992 and 1996 to 372 Gt yr−1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9 Gt yr−1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86 Gt yr−1 in 2017 to 444 Gt yr−1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9 Gt yr−1) and, to a lesser extent, from the Antarctic Peninsula (13±5 Gt yr−1). East Antarctica remains close to a state of balance, with a small gain of 3±15 Gt yr−1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at https://doi.org/10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF
    corecore