25 research outputs found
Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes
Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated
Root-derived organic matter confines sponge community composition in mangrove ecosystems
IntroductionCaribbean mangrove-associated sponge communities are very distinct from sponge communities living on nearby reefs, but the mechanisms that underlie this distinction remain uncertain. It has been hypothesized that dissolved organic matter (DOM) leaching from mangrove roots and the ability of mangrove-associated sponge-bacterial consortia to degrade mangrove DOM may cause this distinction.MethodsThis study tested whether mangrove DOM, leaching from mimicry substrates or directly injected in sponge tissue, affected the performance of a reef and a mangrove sponge species.ResultsControls and the mangrove sponge remained unaffected by mangrove DOM leaching from mimicry substrates or directly injected in sponge tissue, but the reef species showed substantial necrosis when exposed to mangrove DOM.ConclusionsResults presented in this study suggest that mangrove DOM confines the composition of sponge communities in mangrove ecosystems, explaining the exclusion of typical reef species and the adjacent occurrence of distinct sponge communities
