2,733 research outputs found
Hear-Communicate-Remember: Feasibility of delivering an integrated intervention for family caregivers of people with dementia and hearing impairment via telehealth
PURPOSE: To evaluate the feasibility of Hear-Communicate-Remember, a training programme developed for family caregivers of people with dementia and hearing impairment that integrated hearing, communication and memory strategies, which was intended to be delivered via telehealth. MATERIALS AND METHODS: Participants included six dyads consisting of adults with dementia and hearing impairment and their family caregivers. Data collection involved a combination of semi-structured interviews, self-report questionnaires and field notes. RESULTS: Analysis of the qualitative interviews revealed four themes: appropriateness of intervention resources, considerations for the delivery of intervention via telehealth, knowledge and application of intervention strategies, and impact of the intervention on day-to-day life. Results from the satisfaction survey indicated that caregiver participants were mostly satisfied with all aspects of the intervention except the use of some technological components. The field notes described challenges with implementation via telehealth. CONCLUSIONS: Future research involving a cohort comparison study with a larger cohort of dyads is needed to establish treatment efficacy
Backbone resonance assignments of the monomeric DUF59 domain of human Fam96a
Proteins containing a domain of unknown function 59 (DUF59) appear to have a variety of physiological functions, ranging from iron-sulfur cluster assembly to DNA repair. DUF59 proteins have been found in bacteria, archaea and eukaryotes, however Fam96a and Fam96b are the only mammalian proteins predicted to contain a DUF59 domain. Fam96a is an 18 kDa protein comprised primarily of a DUF59 domain (residues 31-157) and an N-terminal signal peptide (residues 1-27). Interestingly, the DUF59 domain of Fam96a exists as monomeric and dimeric forms in solution, and X-ray crystallography studies of both forms unexpectedly revealed two different domain-swapped dimer structures. Here we report the backbone resonance assignments and secondary structure of the monomeric form of the 127 residue DUF59 domain of human Fam96a. This study provides the basis for further understanding the structural variability exhibited by Fam96a and the mechanism for domain swapping
Three-dimensional jamming and flows of soft glassy materials
Various disordered dense systems such as foams, gels, emulsions and colloidal
suspensions, exhibit a jamming transition from a liquid state (they flow) to a
solid state below a yield stress. Their structure, thoroughly studied with
powerful means of 3D characterization, exhibits some analogy with that of
glasses which led to call them soft glassy materials. However, despite its
importance for geophysical and industrial applications, their rheological
behavior, and its microscopic origin, is still poorly known, in particular
because of its nonlinear nature. Here we show from two original experiments
that a simple 3D continuum description of the behaviour of soft glassy
materials can be built. We first show that when a flow is imposed in some
direction there is no yield resistance to a secondary flow: these systems are
always unjammed simultaneously in all directions of space. The 3D jamming
criterion appears to be the plasticity criterion encountered in most solids. We
also find that they behave as simple liquids in the direction orthogonal to
that of the main flow; their viscosity is inversely proportional to the main
flow shear rate, as a signature of shear-induced structural relaxation, in
close similarity with the structural relaxations driven by temperature and
density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm
Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model
BACKGROUND: Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel(®)) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model. METHODS: Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs. RESULTS: Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected). CONCLUSION: These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV
Breakdown of Fermi-liquid theory in a cuprate superconductor
The behaviour of electrons in solids is remarkably well described by Landau's
Fermi-liquid theory, which says that even though electrons in a metal interact
they can still be treated as well-defined fermions, called ``quasiparticles''.
At low temperature, the ability of quasiparticles to transport heat is strictly
given by their ability to transport charge, via a universal relation known as
the Wiedemann-Franz law, which no material in nature has been known to violate.
High-temperature superconductors have long been thought to fall outside the
realm of Fermi-liquid theory, as suggested by several anomalous properties, but
this has yet to be shown conclusively. Here we report on the first experimental
test of the Wiedemann-Franz law in a cuprate superconductor,
(Pr,Ce)CuO. Our study reveals a clear departure from the universal law
and provides compelling evidence for the breakdown of Fermi-liquid theory in
high-temperature superconductors.Comment: 7 pages, 3 figure
Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis
Antibodies to citrullinated proteins (anti-cyclic-citrullinated peptide [anti-CCP] antibodies) are highly specific for rheumatoid arthritis (RA) and precede the onset of disease symptoms, indicating a pathogenetic role for these antibodies in RA. We recently showed that distinct genetic risk factors are associated with either anti-CCP-positive disease or anti-CCP-negative disease. These data are important as they indicate that distinct pathogenic mechanisms are underlying anti-CCP-positive disease or anti-CCP-negative disease. Likewise, these observations raise the question of whether anti-CCP-positive RA and anti-CCP-negative RA are clinically different disease entities. We therefore investigated whether RA patients with anti-CCP antibodies have a different clinical presentation and disease course compared with patients without these autoantibodies. In a cohort of 454 incident patients with RA, 228 patients were anti-CCP-positive and 226 patients were anti-CCP-negative. The early symptoms, tender and swollen joint count, and C-reactive protein level at inclusion, as well as the swollen joint count and radiological destruction during 4 years of follow-up, were compared for the two groups. There were no differences in morning stiffness, type, location and distribution of early symptoms, patients' rated disease activity and C-reactive protein at inclusion between RA patients with and without anti-CCP antibodies. The mean tender and swollen joint count for the different joints at inclusion was similar. At follow-up, patients with anti-CCP antibodies had more swollen joints and more severe radiological destruction. Nevertheless, the distribution of affected joints, for swelling, bone erosions and joint space narrowing, was similar. In conclusion, the phenotype of RA patients with or without anti-CCP antibodies is similar with respect to clinical presentation but differs with respect to disease course
Nongenomic oestrogen signalling in oestrogen receptor negative breast cancer cells: a role for the angiotensin II receptor AT1
INTRODUCTION: Oestrogens can mediate some of their cell survival properties through a nongenomic mechanism that involves the mitogen-activated protein kinase (MAPK) pathway. The mechanism of this rapid signalling and its dependence on a membrane bound oestrogen receptor (ER), however, remains controversial. The role of G-protein-coupled receptor and epidermal growth factor (EGF) receptor in an ER-independent signalling pathway modulated by oestrogen was investigated. METHODS: ER-positive and ER-negative breast cancer cell lines (MCF-7 and SKBR3) and primary breast cancer cell cultures were used in this study. Cell proliferation was assessed using standard MTT assays. Protein and cAMP levels were detected by Western blotting and ELISA, respectively. Antigen localization was performed by immunocytochemistry, immunohistochemistry and immunofluorescence. Protein knockdown was achieved using small interfering RNA technologies. RESULTS: EGF and oestrogen, alone and in combination, induced cell proliferation and phosphorylation of MAPK proteins Raf and ERK (extracellular signal regulated kinase)1/2 in both ER-negative SKBR3 and ER-positive MCF-7 human breast cancer cell lines. Increased Raf phosphorylation was also observed in primary human breast cultures derived from ER-positive and ER-negative breast tumours. Oestrogen induced an increase in intracellular cAMP in ER-negative SKBR3 human breast cancer cells. Oestrogen-mediated cell growth and phosphorylation of MAPK was modified by the EGF receptor antagonist AG1478, the G-protein antagonist pertussis toxin, and the angiotensin II receptor antagonist saralasin. Knockdown of angiotensin II type 1 receptor (AT1) protein expression with small interfering RNA attenuated oestrogen-induced Raf phosphorylation in ER-negative cells. AT1 receptor was found to be expressed in the cell membrane of breast tumour epithelial cells. CONCLUSION: These findings provide evidence that, in breast cancer cells, oestrogen can signal through AT1 to activate early cell survival mechanisms in an ER-independent manner
First-principles design and subsequent synthesis of a material to search for the permanent electric dipole moment of the electron
We describe the first-principles design and subsequent synthesis of a new
material with the specific functionalities required for a solid-state-based
search for the permanent electric dipole moment of the electron. We show
computationally that perovskite-structure europium barium titanate should
exhibit the required large and pressure-dependent ferroelectric polarization,
local magnetic moments, and absence of magnetic ordering even at liquid helium
temperature. Subsequent synthesis and characterization of
EuBaTiO ceramics confirm the predicted desirable
properties.Comment: Nature Materials, in pres
- …