78 research outputs found
Critical Role of Macrophages and Their Activation via MyD88-NFκB Signaling in Lung Innate Immunity to Mycoplasma pneumoniae
Mycoplasma pneumoniae (Mp), a common cause of pneumonia, is associated with asthma; however, the mechanisms underlying this association remain unclear. We investigated the cellular immune response to Mp in mice. Intranasal inoculation with Mp elicited infiltration of the lungs with neutrophils, monocytes and macrophages. Systemic depletion of macrophages, but not neutrophils, resulted in impaired clearance of Mp from the lungs. Accumulation and activation of macrophages were decreased in the lungs of MyD88−/− mice and clearance of Mp was impaired, indicating that MyD88 is a key signaling protein in the anti-Mp response. MyD88-dependent signaling was also required for the Mp-induced activation of NFκB, which was essential for macrophages to eliminate the microbe in vitro. Thus, MyD88-NFκB signaling in macrophages is essential for clearance of Mp from the lungs
Dynamism in the solar core
Recent results of a mixed shell model heated asymmetrically by transient
increases in nuclear burning indicate the transient generation of small hot
spots inside the Sun somewhere between 0.1 and 0.2 solar radii. These hot
bubbles are followed by a nonlinear differential equation system with finite
amplitude non-homologous perturbations which is solved in a solar model. Our
results show the possibility of a direct connection between the dynamic
phenomena of the solar core and the atmospheric activity. Namely, an initial
heating about DQ_0 ~ 10^{31}-10^{37} ergs can be enough for a bubble to reach
the outer convective zone. Our calculations show that a hot bubble can arrive
into subphotospheric regions with DQ_final ~ 10^{28} - 10^{34} ergs with a high
speed, up to 10 km s-1, approaching the local sound speed. We point out that
the developing sonic boom transforms the shock front into accelerated particle
beam injected upwards into the top of loop carried out by the hot bubble above
its forefront traveling from the solar interior. As a result, a new perspective
arises to explain flare energetics. We show that the particle beams generated
by energetic deep-origin hot bubbles in the subphotospheric layers have masses,
energies, and chemical compositions in the observed range of solar
chromospheric and coronal flares. It is shown how the emergence of a hot bubble
into subphotospheric regions offers a natural mechanism that can generate both
the eruption leading to the flare and the observed coronal magnetic topology
for reconnection. We show a list of long-standing problems of solar physics
that our model explains. We present some predictions for observations, some of
which are planned to be realized in the near future.Comment: 44 pages, 20 figure
A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system
BACKGROUND: This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. DISCUSSION: The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. SUMMARY: Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine
First Results On p Modes From Golf Experiment
. The GOLF experiment on the SOHO mission aims to study the internal structure of the Sun by measuring the spectrum of global oscillations in the frequency range 10 ,7 to 10 ,2 Hz. Here we present the results of the analysis of the first 8 months of data. Special emphasis is put into the frequency determination of the p modes, as well as the splitting in the multiplets due to rotation. For both, we show that the improvement in S/N level with respect to the ground-based networks and other experiments is essential in achieving a very low-degree frequency table with small errors (# 2 parts in 10 5 ). On the other hand, the splitting found seems to favour a solar core which does not rotate slower than its surface. The line widths do agree with theoretical expectations and other observations. 1. Introduction Helioseismology uses the temporal and spatial properties of solar oscillations to study the solar interior. The quality of analysis as measured by the precision of the deductions..
- …