136 research outputs found

    Ultrasound phantom with solids mimicking cancerous tissue for needle breast biopsy

    Get PDF
    This study aimed at synthesizing hydrogels to simulate opaque breast tissue (BT) and coloured cancerous tissues (CT) at different densities of the designed phantom to improve the biopsy-related skills along with ultrasonography. Both tissues are tear-resistant and therefore, the phantom can be trained multiple times in order to lower the price and improve the eye-hand coordination of users. For this purpose, self-healing (SH) polyacrylamide (PAAm) hydrogels (SH hydrogel) obtained by free-radical polymerization of AAm, in the presence of chemical cross-linker, BAAm, physical cross-linker stearyl methacrylate, C18, and ammonium persulfate APS as initiator were used in the design of phantoms. Psyllium was added to the BT to differentiate density and obtain human skin color and it could be distinguished from the CT which was also colored with methyl violet. BT and CTs were characterized with FTIR spectroscopy, mechanical, swelling, and refractive index measurements. Designing phantoms from BT and CT were characterized by ultrasonography, mechanical tests, observation of needle track after biopsy, and stabilization tests to follow the self-healing behaviours of tissues with time. As a result of this study, self-healing, low-cost, and suitable for multi-usage ultrasonographic phantom for needle breast biopsy was designed and cancerous tissue was successfully detected.[214S357]Acknowledgements We thank T?B?TAK, which supported our work with project number of 214S357. Many thanks to Dentist Dr. Hayri Bingeli for their help with molding the hydrogels

    Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes

    Get PDF
    The novel coronavirus (SARS-CoV-2) causes severe acute respiratory syndrome and can be fatal. In particular, antiviral drugs that are currently available to treat infection in the respiratory tract have been experienced, but there is a need for new antiviral drugs that are targeted and inhibit coronavirus. The antiviral properties of organic compounds found in nature, especially coumarins, are known and widely studied. Coumarins, which are also metabolites in many medicinal drugs, should be investigated as inhibitors against coronavirus due to their pharmacophore properties (low toxicity and high pharmacokinetic properties). The easy addition of substituents to the chemical structures of coumarins makes these structures unique for the drug design. This study focuses on factors that increase the molecular binding and antiviral properties of coumarins. Molecular docking studies have been carried out to five different proteins (Spike S1-subunit, NSP5, NSP12, NSP15, and NSP16) of the SARS-CoV-2 and two proteins (ACE2 and VKORC1) of human. The best binding scores for 17 coumarins were determined for NSP12 (NonStructural Protein-12). The highest score (–10.01 kcal/mol) in the coumarin group is 2-morpholinoethan-1-amine substituted coumarin. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses of selected ligand-protein complexes were performed. The binding energies in each 5 ns were calculated and it was found that the interaction between ligand and target protein were stable. Communicated by Ramaswamy H. Sarma. © 2020 Informa UK Limited, trading as Taylor & Francis Group

    Nicel Kimyasal Analiz

    No full text
    corecore