4 research outputs found

    The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives

    Get PDF
    Increasing oil palm plantations, both for obtaining crude palm oil (CPO) and for the production of biobased products, have generated growing concern about the impact of greenhouse gas (GHG) emissions on the environment. Colombia has the potential to produce sustainable biobased products from oil palm. Nevertheless, national GHG emissions have not yet been reported by this sector. Achieving the collection of the total primary data from the oil palm sector, in Colombia, entails a tremendous challenge. Notwithstanding, for this study, the data collection of 70% of the production of fresh fruit bunches (FFB) was achieved. Therefore, current situation of CPO production in Colombia is analyzed, including 1) GHG emissions calculation, 2) net energy ratio (NER), and 3) economic performance. Moreover, the analysis includes two future scenarios, where the CPO production chain is optimized to reduce GHG emissions. Future scenario A produces biodiesel (BD), biogas, cogeneration, and compost; while future scenario B produces BD, biogas, cogeneration, and pellets. The methodology, for all the scenarios, includes life-cycle assessment and economic analysis evaluation. The results show a significant potential for improving the current palm oil production, including a 55% reduction in GHG emissions. The impact of land-use change must be mitigated to reduce GHG emissions. Therefore, a sustainable oil palm expansion should be in areas with low carbon stock or areas suitable/available to the crop (e.g., cropland, pastureland). Avoiding the deforestation of natural forests is required. Besides, crop yield should be increased to minimize the land use, using biomass to produce biobased products, and capture biogas to reduce methane emissions. In the biodiesel production life-cycle, the NER analysis shows the fossil energy consumed is lower than the renewable energy produced. Regarding the economic performance, it shows that in an optimized production chain, the capital expenditure and operational expenditure will decrease by approximately 20%

    Sex differences in basal hypothalamic anorectic and orexigenic gene expression and the effect of quantitative and qualitative food restriction

    Get PDF
    Abstract Background Research into energy balance and growth has infrequently considered genetic sex, yet there is sexual dimorphism for growth across the animal kingdom. We test the hypothesis that in the chicken, there is a sex difference in arcuate nucleus neuropeptide gene expression, since previous research indicates hypothalamic AGRP expression is correlated with growth potential and that males grow faster than females. Because growth has been heavily selected in some chicken lines, food restriction is necessary to improve reproductive performance and welfare, but this increases hunger. Dietary dilution has been proposed to ameliorate this undesirable effect. We aimed to distinguish the effects of gut fullness from nutritional feedback on hypothalamic gene expression and its interaction with sex. Methods Twelve-week-old male and female fast-growing chickens were either released from restriction and fed ad libitum or a restricted diet plus 15% w/w ispaghula husk, a non-nutritive bulking agent, for 2 days. A control group remained on quantitative restriction. Hypothalamic arcuate nucleus neuropeptides were measured using real-time PCR. To confirm observed sex differences, the experiment was repeated using only ad libitum and restricted fed fast-growing chickens and in a genetically distinct breed of ad libitum fed male and female chickens. Linear mixed models (Genstat 18) were used for statistical analysis with transformation where appropriate. Results There were pronounced sex differences: expression of the orexigenic genes AGRP (P < 0.001) and NPY (P < 0.002) was higher in males of the fast-growing strain. In genetically distinct chickens, males had higher AGRP mRNA (P = 0.002) expression than females, suggesting sex difference was not restricted to a fast-growing strain. AGRP (P < 0.001) expression was significantly decreased in ad libitum fed birds but was high and indistinguishable between birds on a quantitative versus qualitative restricted diet. Inversely, gene expression of the anorectic genes POMC and CART was significantly higher in ad libitum fed birds but no consistent sex differences were observed. Conclusion Expression of orexigenic peptides in the avian hypothalamus are significantly different between sexes. This could be useful starting point of investigating further if AGRP is an indicator of growth potential. Results also demonstrate that gut fill alone does not reduce orexigenic gene expression
    corecore