15 research outputs found

    R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams.</p> <p>Results</p> <p>We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes.</p> <p>Conclusions</p> <p>R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at <url>http://breaker.research.yale.edu/R2R</url> and as an Additional file.</p

    The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport

    Get PDF
    Fetal exposure to a maternal low protein diet during rat pregnancy is associated with hypertension, renal dysfunction and metabolic disturbance in adult life. These effects are present when dietary manipulations target only the first half of pregnancy. It was hypothesised that early gestation protein restriction would impact upon placental gene expression and that this may give clues to the mechanism which links maternal diet to later consequences. Pregnant rats were fed control or a low protein diet from conception to day 13 gestation. Placentas were collected and RNA Sequencing performed using the Illumina platform. Protein restriction down-regulated 67 genes and up-regulated 24 genes in the placenta. Ingenuity pathway analysis showed significant enrichment in pathways related to cholesterol and lipoprotein transport and metabolism, including atherosclerosis signalling, clathrin-mediated endocytosis, LXR/RXR and FXR/RXR activation. Genes at the centre of these processes included the apolipoproteins ApoB, ApoA2 and ApoC2, microsomal triglyceride transfer protein (Mttp), the clathrin-endocytosis receptor cubilin, the transcription factor retinol binding protein 4 (Rbp4) and transerythrin (Ttr; a retinol and thyroid hormone transporter). Real-time PCR measurements largely confirmed the findings of RNASeq and indicated that the impact of protein restriction was often striking (cubilin up-regulated 32-fold, apoC2 up-regulated 17.6-fold). The findings show that gene expression in specific pathways is modulated by maternal protein restriction in the day-13 rat placenta. Changes in cholesterol transport may contribute to altered tissue development in the fetus and hence programme risk of disease in later life

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    The Rotterdam Study: 2016 objectives and design update

    Full text link

    On the application of the Flamelet Generated Manifold (FGM) approach to the simulation of an igniting diesel spray

    No full text
    A study on the modeling of fuel sprays in diesel engines will be presented. First, modeling of non-reacting diesel spray formation is studied in Fluent and Star-CD. The main objective however is to model combustion of the spray using a generic approach. This is achieved by applying a detailed chemistry tabulation method, called FGM (Flamelet Generated Manifold). Using this approach will make additional ignition modeling, which is conventional, obsolete. The FGM method is implemented in Fluent and Star-CD. Subsequently, constant volume spray combustion and full engine cycle simulations are performed.Spray formation is modeled with Lagrangian type models that are available in Fluent and Star-CD, and also with a 1D Euler-Euler spray model that is implemented and applied in 3D Fluent simulations. The results are compared with EHPC (Eindhoven High Pressure Cell) experiments, data from Sandia National Laboratories and IFP (Institut Français du Pétrole). The newly created combination of the 1D spray model with 3D Fluent is able to predict spray lengths and shapes quantitatively well. It also offers the advantage of a proper mesh resolution behavior (higher resolution gives better solutions), and is suitable for parallel computing.Combustion of the fuel spray is modeled with a tabulated chemistry approach (FGM). The manifold is created with igniting diffusion flame solutions. Important characteristics like auto-ignition and flame lift-off are captured without applying an explicit ignition model, showing the generic nature and therefore the potential of the applied method. Results with heptane as a surrogate for diesel fuel compare well with experimental observations. Also the first full engine cycle simulations for a heavy duty diesel engine show promising results

    Systematic Review of the Prevalence and Incidence of Parkinson’s Disease in Asia

    No full text
    corecore