1,209 research outputs found

    A review of techniques for spatial modeling in geographical, conservation and landscape genetics

    Get PDF
    Most evolutionary processes occur in a spatial context and several spatial analysis techniques have been employed in an exploratory context. However, the existence of autocorrelation can also perturb significance tests when data is analyzed using standard correlation and regression techniques on modeling genetic data as a function of explanatory variables. In this case, more complex models incorporating the effects of autocorrelation must be used. Here we review those models and compared their relative performances in a simple simulation, in which spatial patterns in allele frequencies were generated by a balance between random variation within populations and spatially-structured gene flow. Notwithstanding the somewhat idiosyncratic behavior of the techniques evaluated, it is clear that spatial autocorrelation affects Type I errors and that standard linear regression does not provide minimum variance estimators. Due to its flexibility, we stress that principal coordinate of neighbor matrices (PCNM) and related eigenvector mapping techniques seem to be the best approaches to spatial regression. In general, we hope that our review of commonly used spatial regression techniques in biology and ecology may aid population geneticists towards providing better explanations for population structures dealing with more complex regression problems throughout geographic space

    Revisiting the technical validation of tumour biomarker assays: how to open a Pandora's box

    Get PDF
    A tumour biomarker is a characteristic that is objectively measured and evaluated in tumour samples as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. The development of a biomarker contemplates distinct phases, including discovery by hypothesis-generating preclinical or exploratory studies, development and qualification of the assay for the identification of the biomarker in clinical samples, and validation of its clinical significance. Although guidelines for the development and validation of biomarkers are available, their implementation is challenging, owing to the diversity of biomarkers being developed. The term 'validation' undoubtedly has several meanings; however, in the context of biomarker research, a test may be considered valid if it is 'fit for purpose'. In the process of validation of a biomarker assay, a key point is the validation of the methodology. Here we discuss the challenges for the technical validation of immunohistochemical and gene expression assays to detect tumour biomarkers and provide suggestions of pragmatic solutions to address these challenges
    • …
    corecore