9 research outputs found

    Using quantile regression to investigate racial disparities in medication non-adherence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies have investigated racial/ethnic disparities in medication non-adherence in patients with type 2 diabetes using common measures such as medication possession ratio (MPR) or gaps between refills. All these measures including MPR are quasi-continuous and bounded and their distribution is usually skewed. Analysis of such measures using traditional regression methods that model mean changes in the dependent variable may fail to provide a full picture about differential patterns in non-adherence between groups.</p> <p>Methods</p> <p>A retrospective cohort of 11,272 veterans with type 2 diabetes was assembled from Veterans Administration datasets from April 1996 to May 2006. The main outcome measure was MPR with quantile cutoffs Q1-Q4 taking values of 0.4, 0.6, 0.8 and 0.9. Quantile-regression (QReg) was used to model the association between MPR and race/ethnicity after adjusting for covariates. Comparison was made with commonly used ordinary-least-squares (OLS) and generalized linear mixed models (GLMM).</p> <p>Results</p> <p>Quantile-regression showed that Non-Hispanic-Black (NHB) had statistically significantly lower MPR compared to Non-Hispanic-White (NHW) holding all other variables constant across all quantiles with estimates and p-values given as -3.4% (p = 0.11), -5.4% (p = 0.01), -3.1% (p = 0.001), and -2.00% (p = 0.001) for Q1 to Q4, respectively. Other racial/ethnic groups had lower adherence than NHW only in the lowest quantile (Q1) of about -6.3% (p = 0.003). In contrast, OLS and GLMM only showed differences in mean MPR between NHB and NHW while the mean MPR difference between other racial groups and NHW was not significant.</p> <p>Conclusion</p> <p>Quantile regression is recommended for analysis of data that are heterogeneous such that the tails and the central location of the conditional distributions vary differently with the covariates. QReg provides a comprehensive view of the relationships between independent and dependent variables (i.e. not just centrally but also in the tails of the conditional distribution of the dependent variable). Indeed, without performing QReg at different quantiles, an investigator would have no way of assessing whether a difference in these relationships might exist.</p

    Explaining explanations in AI

    Get PDF
    Recent work on interpretability in machine learning and AI has focused on the building of simplified models that approximate the true criteria used to make decisions. These models are a useful pedagogical device for teaching trained professionals how to predict what decisions will be made by the complex system, and most importantly how the system might break. However, when considering any such model it's important to remember Box's maxim that "All models are wrong but some are useful." We focus on the distinction between these models and explanations in philosophy and sociology. These models can be understood as a "do it yourself kit" for explanations, allowing a practitioner to directly answer "what if questions" or generate contrastive explanations without external assistance. Although a valuable ability, giving these models as explanations appears more difficult than necessary, and other forms of explanation may not have the same trade-offs. We contrast the different schools of thought on what makes an explanation, and suggest that machine learning might benefit from viewing the problem more broadly

    Time for break: Understanding information workers' sedentary behavior through a break prompting system

    No full text
    © 2018 Association for Computing Machinery. Extended periods of uninterrupted sedentary behavior are detrimental to long-term health. While prolonged sitting is prevalent among information workers, it is difficult for them to break prolonged sedentary behavior due to the nature of their work. This work aims to understand information workers' intentions & practices around standing or moving breaks. We developed Time for Break, a break prompting system that enables people to set their desired work duration and prompts them to stand up or move. We conducted an exploratory field study (N = 25) with Time for Break to collect participants' work & break intentions and behaviors for three weeks, followed by semistructured interviews. We examined rich contexts affecting participants' receptiveness to standing or moving breaks, and identified how their habit strength and self-regulation are related to their break-taking intentions & practices. We discuss design implications for interventions to break up periods of prolonged sedentary behavior in workplaces
    corecore