23 research outputs found
Four Regional Marine Biodiversity Studies: Approaches and Contributions to Ecosystem-Based Management
We compare objectives and approaches of four regional studies of marine biodiversity: Gulf of Maine Area Census of Marine Life, Baltic Sea History of Marine Animal Populations, Great Barrier Reef Seabed Biodiversity Project, and Gulf of Mexico Biodiversity Project. Each program was designed as an "ecosystem" scale but was created independently and executed differently. Each lasted 8 to 10 years, including several years to refine program objectives, raise funding, and develop research networks. All resulted in improved baseline data and in new, or revised, data systems. Each contributed to the creation or evolution of interdisciplinary teams, and to regional, national, or international science-management linkages. To date, there have been differing extents of delivery and use of scientific information to and by management, with greatest integration by the program designed around specific management questions. We evaluate each research program's relative emphasis on three principal elements of biodiversity organization: composition, structure, and function. This approach is used to analyze existing ecosystem-wide biodiversity knowledge and to assess what is known and where gaps exist. In all four of these systems and studies, there is a relative paucity of investigation on functional elements of biodiversity, when compared with compositional and structural elements. This is symptomatic of the current state of the science. Substantial investment in understanding one or more biodiversity element(s) will allow issues to be addressed in a timely and more integrative fashion. Evaluating research needs and possible approaches across specific elements of biodiversity organization can facilitate planning of future studies and lead to more effective communication between scientists, managers, and stakeholders. Building a general approach that captures how various studies have focused on different biodiversity elements can also contribute to meta-analyses of worldwide experience in scientific research to support ecosystem-based management
hippocampus
Aluminium has toxic effects on many organ systems of the human body. Aluminium toxicity also is a factor in many neurodegenerative diseases. We investigated changes in numbers of hippocampal neurons in rats exposed to aluminium using an optical fractionator and we investigated aluminium-induced apoptosis using the transferase mediated dUTP nick end labeling (TUNEL) assay. Twenty-four female rats were divided equally into control, sham and aluminium-exposed groups. The control group received no treatment. The two treatment groups were injected intraperitoneally with 1 ml 0.9% saline without (sham) and with 3 mg/ml aluminium sulfate every day for two weeks. Following the treatments, the brains were removed, the left hemisphere was used for hippocampal neuron counting using an optical fractionator and the right hemisphere was investigated using hippocampal TUNEL assay to determine the apoptotic index. The number of neurons in the stratum pyramidale of the hippocampus was significantly less in the aluminium group than in the control and sham groups; there was no significant difference between the control and sham groups. The apoptotic index also was significantly higher in the aluminium group than in the other two groups. We quantified the toxic effects of aluminium on the rat hippocampus and determined that apoptosis was the mechanism of aluminium-induced neuron death in the hippocampus
diabetic foot injuries
The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 x 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing
Parameters of Term Ross Broiler Chicks
Copper is an essential trace element that is extremely toxic to organisms and organs at high doses. We have investigated the histological and biochemical effects of a toxic dose of copper sulfate on the liver of term Ross broiler chicks. Fertilized eggs were divided into three groups: experimental, injected with 50 mcg/0.1 ml copper sulfate in the air chambers on day 1; sham, injected with 0.1 ml saline; and control, no injection. Term chicks were killed and their livers investigated histologically, with hematoxylin-eosin-stained sections examined under light microscopy, and biochemically, for malondialdehyde and glutathione levels. Histological examinations showed copper-treated samples with granular degeneration and necrosis of hepatocytes and impairment to the cell lining of the remark cords. The samples had a congestive appearance, with blood in the vena centralis and sinusoids, slight connective tissue increase, and lymphocyte infiltration. Control and sham group sections had normal appearances. As oxidative damage parameters, in the copper-treated group, malondialdehyde levels were increased and glutathione levels decreased. In the sham and control groups, there were no significant differences. At this toxic dose, copper sulfate shows oxidative damage according to the histology of term chick liver that are confirmed biochemically by the changes in malondialdehyde and glutathione levels