1,028 research outputs found

    Building library skills in the seventh grade

    Full text link
    Thesis (M.A.)--Boston University, 1948. This item was digitized by the Internet Archive

    Quantitative modeling of \textit{in situ} x-ray reflectivity during organic molecule thin film growth

    Full text link
    Synchrotron-based x-ray reflectivity is increasingly employed as an \textit{in situ} probe of surface morphology during thin film growth, but complete interpretation of the results requires modeling the growth process. Many models have been developed and employed for this purpose, yet no detailed, comparative studies of their scope and accuracy exists in the literature. Using experimental data obtained from hyperthermal deposition of pentane and diindenoperylene (DIP) on SiO2_2, we compare and contrast three such models, both with each other and with detailed characterization of the surface morphology using ex-situ atomic force microscopy (AFM). These two systems each exhibit particular phenomena of broader interest: pentacene/SiO2_2 exhibits a rapid transition from rough to smooth growth. DIP/SiO2_2, under the conditions employed here, exhibits growth rate acceleration due to a different sticking probability between the substrate and film. In general, \textit{independent of which model is used}, we find good agreement between the surface morphology obtained from fits to the \insitu x-ray data with the actual morphology at early times. This agreement deteriorates at later time, once the root-mean squared (rms) film roughness exceeds about 1 ML. A second observation is that, because layer coverages are under-determined by the evolution of a single point on the reflectivity curve, we find that the best fits to reflectivity data --- corresponding to the lowest values of χν2\chi_\nu^2 --- do not necessarily yield the best agreement between simulated and measured surface morphologies. Instead, it appears critical that the model reproduce all local extrema in the data. In addition to showing that layer morphologies can be extracted from a minimal set of data, the methodology established here provides a basis for improving models of multilayer growth by comparison to real systems.Comment: 34 pages (double-spaced, including figures and references), 10 figures, 3 appendice

    Renewing the Fight Against Torture: Challenges and Lessons Learned from Latin America

    Get PDF

    Development of high-gain gaseous photomultipliers for the visible spectral range

    Full text link
    We summarize the development of visible-sensitive gaseous photomultipliers, combining a semitransparent bi-alkali photocathode with a state-of-the-art cascaded electron multiplier. The latter has high photoelectron collection efficiency and a record ion blocking capability. We describe in details the system and methods of photocathode production and characterization, their coupling with the electron multiplier and the gaseous-photomultiplier operation and characterization in a continuous mode. We present results on the properties of laboratory-produced K2_2CsSb, Cs3_3Sb and Na2_2KSb photocathodes and report on their stability and QE in gas; K2_2CsSb photocathodes yielded QE values in Ar/CH4_4(95/5) above 30% at wavelengths of 360-400 nm. The novel gaseous photomultiplier yielded stable operation at gains of 105^5, in continuous operation mode, in 700 Torr of this gas; its sensitivity to single photons was demonstrated. Other properties are described. The successful detection of visible light with this gas-photomultiplier pave ways towards further development of large-area sealed imaging detectors, of flat geometry, insensitive to magnetic fields, which might have significant impact on light detection in numerous fields.Comment: 22 pages, 12 figures, for submission to JINS

    Reduced Deadtime and Higher Rate Photon-Counting Detection using a Multiplexed Detector Array

    Full text link
    We present a scheme for a photon-counting detection system that can be operated at incident photon rates higher than otherwise possible by suppressing the effects of detector deadtime. The method uses an array of N detectors and a 1-by-N optical switch with a control circuit to direct input light to live detectors. Our calculations and models highlight the advantages of the technique. In particular, using this scheme, a group of N detectors provides an improvement in operation rate that can exceed the improvement that would be obtained by a single detector with deadtime reduced by 1/N, even if it were feasible to produce a single detector with such a large improvement in deadtime. We model the system for continuous and pulsed light sources, both of which are important for quantum metrology and quantum key distribution applications.Comment: 6 figure

    Orbit structure and (reversing) symmetries of toral endomorphisms on rational lattices

    Get PDF
    We study various aspects of the dynamics induced by integer matrices on the invariant rational lattices of the torus in dimension 2 and greater. Firstly, we investigate the orbit structure when the toral endomorphism is not invertible on the lattice, characterising the pretails of eventually periodic orbits. Next we study the nature of the symmetries and reversing symmetries of toral automorphisms on a given lattice, which has particular relevance to (quantum) cat maps.Comment: 29 pages, 3 figure
    • …
    corecore