22,338 research outputs found

    A new possibility to monitor collisions of relativistic heavy ions at LHC and RHIC

    Get PDF
    We consider the radiation of particles of one bunch in the collective field of the oncoming bunch, called coherent bremsstrahlung (CBS). The main characteristics of CBS for LHC (in the Pb-Pb mode) and for RHIC are calculated. At LHC about 3.9108dEγ/Eγ3.9 10^8 dE_\gamma/E_\gamma photons per second are expected for photon energies Eγ∼<Ec=93E_\gamma \stackrel{<} {\sim} E_c= 93 eV. It seems that CBS can be a potential tool for optimizing collisions and for measuring beam parameters. The bunch length can be found from the critical energy of the CBS spectrum; the transverse bunch size is related to the photon rate. A specific dependence of photon rate on the impact parameter between the beams allows for a fast control over the beam displacement.Comment: 9 pages + 4 figures, latex with poscript figures uuencode

    Ab-initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes

    Get PDF
    We derive and compute effective valence-space shell-model interactions from ab-initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three-nucleon forces from chiral effective-field theory. We compute the energies of ground and low-lying states, and find good agreement with experiment. In particular our calculations are consistent with the N=14, 16 shell closures in oxygen-22 and oxygen-24, while for carbon-20 the corresponding N=14 closure is weaker. We find good agreement between our coupled-cluster effective-interaction results with those obtained from standard single-reference coupled-cluster calculations for up to eight valence neutrons

    Effective Operators for Double-Beta Decay

    Get PDF
    We use a solvable model to examine double-beta decay, focusing on the neutrinoless mode. After examining the ways in which the neutrino propagator affects the corresponding matrix element, we address the problem of finite model-space size in shell-model calculations by projecting our exact wave functions onto a smaller subspace. We then test both traditional and more recent prescriptions for constructing effective operators in small model spaces, concluding that the usual treatment of double-beta-decay operators in realistic calculations is unable to fully account for the neglected parts of the model space. We also test the quality of the Quasiparticle Random Phase Approximation and examine a recent proposal within that framework to use two-neutrino decay to fix parameters in the Hamiltonian. The procedure eliminates the dependence of neutrinoless decay on some unfixed parameters and reduces the dependence on model-space size, though it doesn't eliminate the latter completely.Comment: 10 pages, 8 figure

    Determination of biaxial creep strength of T-111 tantalum alloy

    Get PDF
    Biaxial creep strength of T-111 tantalum alloy tubing in high temperature, high vacuum environmen

    Random-phase-approximation-based correlation energy functionals: Benchmark results for atoms

    Full text link
    The random phase approximation (RPA) for the correlation energy functional of density functional theory has recently attracted renewed interest. Formulated in terms of the Kohn-Sham (KS) orbitals and eigenvalues, it promises to resolve some of the fundamental limitations of the local density and generalized gradient approximations, as for instance their inability to account for dispersion forces. First results for atoms, however, indicate that the RPA overestimates correlation effects as much as the orbital-dependent functional obtained by a second order perturbation expansion on the basis of the KS Hamiltonian. In this contribution, three simple extensions of the RPA are examined, (a) its augmentation by an LDA for short-range correlation, (b) its combination with the second order exchange term, and (c) its combination with a partial resummation of the perturbation series including the second order exchange. It is found that the ground state and correlation energies as well as the ionization potentials resulting from the extensions (a) and (c) for closed sub-shell atoms are clearly superior to those obtained with the unmodified RPA. Quite some effort is made to ensure highly converged RPA data, so that the results may serve as benchmark data. The numerical techniques developed in this context, in particular for the inherent frequency integration, should also be useful for applications of RPA-type functionals to more complex systems.Comment: 11 pages, 7 figure

    Comment: Superconducting transition in Nb nanowires fabricated using focused ion beam

    Full text link
    In a recent paper Tettamanzi et al (2009 Nanotechnology \bf{20} 465302) describe the fabrication of superconducting Nb nanowires using a focused ion beam. They interpret their conductivity data in the framework of thermal and quantum phase slips below TcT_c. In the following we will argue that their analysis is inappropriate and incomplete, leading to contradictory results. Instead, we propose an interpretation of the data within a SN proximity model.Comment: 3 pages, 1 figure accepted in Nanotechnolog

    Axial charges of octet and decuplet baryons

    Full text link
    We present a study of axial charges of baryon ground and resonant states with relativistic constituent quark models. In particular, the axial charges of octet and decuplet NN, Σ\Sigma, Ξ\Xi, Δ\Delta, Σ∗\Sigma^*, and Ξ∗\Xi^* baryons are considered. The theoretical predictions are compared to existing experimental data and results from other approaches, notably from lattice quantum chromodynamics and chiral perturbation theory. The relevance of axial charges with regard to π\pi-dressing and spontaneous chiral-symmetry breaking is discussed
    • …
    corecore