21 research outputs found

    Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium

    Get PDF
    Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model.Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density.Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium

    Sympathetic nervous system catecholamines and neuropeptide Y neurotransmitters are upregulated in human NAFLD and modulate the fibrogenic function of hepatic stellate cells

    Get PDF
    Background Sympathetic nervous system (SNS) signalling regulates murine hepatic fibrogenesis through effects on hepatic stellate cells (HSC), and obesity-related hypertension with SNS activation accelerates progression of non-alcoholic fatty liver disease (NAFLD), the commonest cause of chronic liver disease. NAFLD may lead to cirrhosis. The effects of the SNS neurotransmitters norepinephrine (NE), epinephrine (EPI) and neuropeptide Y (NPY) on human primary HSC (hHSC) function and in NAFLD pathogenesis are poorly understood. Aims to determine the mechanistic effects of NE/EPI/NPY on phenotypic changes in cultured hHSC, and to study SNS signalling in human NAFLD livers. Methods Freshly isolated hHSC were assessed for expression of cathecholamine/neuropeptide Y receptors and for the synthesis of NE/EPI. The effects of NE/EPI/NPY and adrenoceptor antagonists prazosin (PRZ)/propranolol (PRL) on hHSC fibrogenic functions and the involved kinases and interleukin pathways were examined. Human livers with proven NAFLD were then assessed for upregulation of SNS signalling components. Results Activated hHSC express functional α/β-adrenoceptors and NPY receptors, which are upregulated in the livers of patients with cirrhotic NAFLD. hHSC in culture synthesize and release NE/EPI, required for their optimal basal growth and survival. Exogenous NE/EPI and NPY dose-dependently induced hHSC proliferation, mediated via p38 MAP, PI3K and MEK signalling. NE and EPI but not NPY increased expression of collagen-1α2 via TGF-β without involvement of the pro-fibrogenic cytokines leptin, IL-4 and IL-13 or the anti-fibrotic cytokine IL-10. Conclusions hHSC synthesize and require cathecholamines for optimal survival and fibrogenic functionality. Activated hHSC express directly fibrogenic α/β-adrenoceptors and NPY receptors, upregulated in human cirrhotic NAFLD. Adrenoceptor and NPY antagonists may be novel anti-fibrotic agents in human NAFLD
    corecore