49 research outputs found

    An IND-CCA-Secure Code-Based EncryptionScheme Using Rank Metric

    Get PDF
    The use of rank instead of Hamming metric has been proposed to address the main drawback of code-based cryptography: large key sizes. There exist several Key Encapsulation Mechanisms (KEM) and Public Key Encryption (PKE) schemes using rank metric including some submissions to the NIST call for standardization of Post-Quantum Cryptography. In this work, we present an IND-CCA PKE scheme based on the McEliece adaptation to rank metric proposed by Loidreau at PQC 2017. This IND-CCA PKE scheme based on rank metric does not use a hybrid construction KEM + symmetric encryption. Instead, we take advantage of the bigger message space obtained by the different parameters chosen in rank metric, being able to exchange multiple keys in one ciphertext. Our proposal is designed considering some specific properties of the random error generated during the encryption. We prove our proposal IND-CCA-secure in the QROM by using a security notion called disjoint simulatability introduced by Saito et al. in Eurocrypt 2018. Moreover, we provide security bounds by using the semi-oracles introduced by Ambainis et al

    Marginalization of end-use technologies in energy innovation for climate protection

    Get PDF
    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Hypoxia-Inducible Factor 1α Determines Gastric Cancer Chemosensitivity via Modulation of p53 and NF-κB

    Get PDF
    BACKGROUND: Reduced chemosensitivity of solid cancer cells represents a pivotal obstacle in clinical oncology. Hence, the molecular characterization of pathways regulating chemosensitivity is a central prerequisite to improve cancer therapy. The hypoxia-inducible factor HIF-1alpha has been linked to chemosensitivity while the underlying molecular mechanisms remain largely elusive. Therefore, we comprehensively analysed HIF-1alpha's role in determining chemosensitivity focussing on responsible molecular pathways. METHODOLOGY AND PRINCIPAL FINDINGS: RNA interference was applied to inactivate HIF-1alpha or p53 in the human gastric cancer cell lines AGS and MKN28. The chemotherapeutic agents 5-fluorouracil and cisplatin were used and chemosensitivity was assessed by cell proliferation assays as well as determination of cell cycle distribution and apoptosis. Expression of p53 and p53 target proteins was analyzed by western blot. NF-kappaB activity was characterized by means of electrophoretic mobility shift assay. Inactivation of HIF-1alpha in gastric cancer cells resulted in robust elevation of chemosensitivity. Accordingly, HIF-1alpha-competent cells displayed a significant reduction of chemotherapy-induced senescence and apoptosis. Remarkably, this phenotype was completely absent in p53 mutant cells while inactivation of p53 per se did not affect chemosensitivity. HIF-1alpha markedly suppressed chemotherapy-induced activation of p53 and p21 as well as the retinoblastoma protein, eventually resulting in cell cycle arrest. Reduced formation of reactive oxygen species in HIF-1alpha-competent cells was identified as the molecular mechanism of HIF-1alpha-mediated inhibition of p53. Furthermore, loss of HIF-1alpha abrogated, in a p53-dependent manner, chemotherapy-induced DNA-binding of NF-kappaB and expression of anti-apoptotic NF-kappaB target genes. Accordingly, reconstitution of the NF-kappaB subunit p65 reversed the increased chemosensitivity of HIF-1alpha-deficient cells. CONCLUSION AND SIGNIFICANCE: In summary, we identified HIF-1alpha as a potent regulator of p53 and NF-kappaB activity under conditions of genotoxic stress. We conclude that p53 mutations in human tumors hold the potential to confound the efficacy of HIF-1-inhibitors in cancer therapy

    The potential contribution of disruptive low-carbon innovations to 1.5 °C climate mitigation

    Get PDF
    This paper investigates the potential for consumer-facing innovations to contribute emission reductions for limiting warming to 1.5 °C. First, we show that global integrated assessment models which characterise transformation pathways consistent with 1.5 °C mitigation are limited in their ability to analyse the emergence of novelty in energy end-use. Second, we introduce concepts of disruptive innovation which can be usefully applied to the challenge of 1.5 °C mitigation. Disruptive low-carbon innovations offer novel value propositions to consumers and can transform markets for energy-related goods and services while reducing emissions. Third, we identify 99 potentially disruptive low-carbon innovations relating to mobility, food, buildings and cities, and energy supply and distribution. Examples at the fringes of current markets include car clubs, mobility-as-a-service, prefabricated high-efficiency retrofits, internet of things, and urban farming. Each of these offers an alternative to mainstream consumer practices. Fourth, we assess the potential emission reductions from subsets of these disruptive low-carbon innovations using two methods: a survey eliciting experts’ perceptions and a quantitative scaling-up of evidence from early-adopting niches to matched segments of the UK population. We conclude that disruptive low-carbon innovations which appeal to consumers can help efforts to limit warming to 1.5 °C
    corecore