8 research outputs found

    The role of vision for navigation in the crown-of-thorns seastar, Acanthaster planci

    Get PDF
    Coral reefs all over the Indo-Pacific suffer from substantial damage caused by the crown-of-thorns seastar Acanthaster planci, a voracious predator that moves on and between reefs to seek out its coral prey. Chemoreception is thought to guide A. planci. As vision was recently introduced as another sense involved in seastar navigation, we investigated the potential role of vision for navigation in A. planci. We estimated the spatial resolution and visual field of the compound eye using histological sections and morphometric measurements. Field experiments in a semi-controlled environment revealed that vision in A. planci aids in finding reef structures at a distance of at least 5 m, whereas chemoreception seems to be effective only at very short distances. Hence, vision outweighs chemoreception at intermediate distances. A. planci might use vision to navigate between reef structures and to locate coral prey, therefore improving foraging efficiency, especially when multidirectional currents and omnipresent chemical cues on the reef hamper chemoreception

    Towards a Better Understanding of the Origins of Microlens Arrays in Mesozoic Ophiuroids and Asteroids

    No full text
    Echinoderms are characterized by a calcite endoskeleton with a unique microstructure, which is optimized for multiple functions. For instance, some light-sensitive ophiuroids (Ophiuroidea) and asteroids (Asteroidea) possess skeletal plates with multi-lens arrays that are thought to act as photosensory organs. The origins of these lens-like microstructures have long been unclear. It was recently proposed that the complex photosensory systems in certain modern ophiuroids and asteroids could be traced back to at least the Late Cretaceous (ca. 79 Ma). Here, we document similar structures in ophiuroids and asteroids from the Early Cretaceous of Poland (ca. 136 Ma) that are approximately 57 million years older than the oldest asterozoans with lens-like microstructures described thus far. We use scanning electron microscopy, synchrotron tomography, and electron backscatter diffraction combined with focused ion beam microscopy to describe the morphology and crystallography of these structures in exceptional detail. The results indicate that, similar to Recent light-sensitive ophiuroids, putative microlenses in Cretaceous ophiuroids and asteroids exhibit a shape and crystal orientation that would have minimized spherical aberration and birefringence. We suggest that these lens-like microstructures evolved by secondary deposition of calcite on pre-existing porous tubercles that were already present in ancestral Jurassic forms

    Echinodermata: The Complex Immune System in Echinoderms

    No full text
    View references (418) The Echinodermata are an ancient phylum of benthic marine invertebrates with a dispersal-stage planktonic larva. These animals have innate immune systems characterized initially by clearance of foreign particles, including microbes, from the body cavity of both larvae and adults, and allograft tissue rejection in adults. Immune responsiveness is mediated by a variety of adult coelomocytes and larval mesenchyme cells. Echinoderm diseases from a range of pathogens can lead to mass die-offs and impact aquaculture, but some individuals can recover. Genome sequences of several echinoderms have identified genes with immune function, including expanded families of Toll-like receptors, NOD-like receptors, and scavenger receptors with cysteine-rich domains, plus signaling pathways and cytokines. The set of transcription factors that regulate proliferation and differentiation of the cellular immune system are conserved and indicate the ancestral origins of hematopoiesis. Both larval and adult echinoderms are in constant contact with potential pathogens in seawater, and they respond to infection by phagocytosis and encapsulation, and employ proteins that function in immune detection and response. Antipathogen responses include activation of the SpTransformer genes, a complement system, and the production of many types of antimicrobial peptides. Echinoderms have homologues of the recombinase activating genes plus all associated genes that function in vertebrates for immunoglobulin gene family rearrangement, although their gene targets are unknown. The echinoderm immune system has been characterized as unexpectedly complex, robust, and flexible. Many echinoderms have very long life-spans that correlate with an excellent capacity for cell damage repair. In many marine ecosystems, echinoderms are keystone predators and herbivores, and therefore are species that can serve as optimal sentinels of environmental health. Coelomocytes can be employed in sensor systems to test for the presence of marine pollutants. When Elie Metchnikoff inserted a rose prickle into a larval sea star and observed chemotaxis, phagocytosis, and encapsulation by the mesenchyme cells, he initiated not only the field of immunology but also that of comparative immunology, of which the echinoderms have been an important part
    corecore