38 research outputs found

    Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study

    Get PDF
    BACKGROUND: Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s) of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR). AhR regulates the transcription of diverse genes through binding to the xenobiotic-responsive element (XRE). Since the AhR has also been detected in various regions of the brain, the AhR may play a key role in the developmental neurotoxicity of dioxins. This study focused on the effect of AhR activation in the developing neuron. METHODS: The influence of the AhR on the developing neuron was assessed using the Neuro2a-AhR transfectant. The undifferentiated murine neuroblastoma Neuro2a cell line (ATCC) was stably transfected with AhR cDNA and the established cell line was named N2a-Rα. The activation of exogenous AhR in N2a-Rα cells was confirmed using RNAi, with si-AhR suppressing the expression of exogenous AhR. The neurological properties of N2a-Rα based on AhR activation were evaluated by immunohistochemical analysis of cytoskeletal molecules and by RT-PCR analysis of mRNA expression of neurotransmitter-production related molecules, such as tyrosine hydroxylase (TH). RESULTS: N2a-Rα cells exhibited constant activation of the exogenous AhR. CYP1A1, a typical XRE-regulated gene, mRNA was induced without the application of ligand to the culture medium. N2a-Rα cells exhibited two significant functional features. Morphologically, N2a-Rα cells bore spontaneous neurites exhibiting axon-like properties with the localization of NF-H. In addition, cdc42 expression was increased in comparison to the control cell line. The other is the catecholaminergic neuron-like property. N2a-Rα cells expressed tyrosine hydroxylase (TH) mRNA as a functional marker of catecholaminergic neurotransmitter production. Thus, exogenous AhR induced catecholaminergic differentiation in N2a-Rα cells. CONCLUSION: The excessive activation of AhR resulted in neural differentiation of Neuro2a cells. This result revealed that dioxins may affect the nervous system through the AhR-signaling pathway. Activated AhR may disrupt the strictly regulated brain formation with irregular differentiation occurring rather than cell death

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron

    Online continuing medical education as a key link for successful noncommunicable disease self-management: the CASALUD™ Model

    No full text
    Héctor Gallardo-Rincón,1 Rodrigo Saucedo-Martínez,1 Ricardo Mujica-Rosales,1 Evan M Lee,2 Amy Israel,2 Braulio Torres-Beltran,3 Úrsula Quijano-González,3 Elena Rose Atkinson,3 Pablo Kuri-Morales,4 Roberto Tapia-Conyer1 1Fundación Carlos Slim, Mexico City, Mexico; 2Lilly Global Health, Eli Lilly and Company, Vernier, Switzerland; 3C230 Consultores, Mexico City, Mexico; 4Mexican Ministry of Health, Mexico City, Mexico Purpose: The purpose of this study is to evaluate how the benefits of online continuing medical education (CME) provided to health care professionals traveled along a patient “educational chain”. In this study, the educational chain begins with the influence that CME can have on the quality of health care, with subsequent influence on patient knowledge, disease self-management, and disease biomarkers. Methods: A total of 422 patients with at least one noncommunicable disease (NCD) treated in eight different Mexican public health clinics were followed over 3 years. All clinics were participants in the CASALUD Model, an NCD care model for primary care, where all clinic staff were offered CME. Data were collected through a questionnaire on health care, patient disease knowledge, and self-management behaviors; blood samples and anthropometric measurements were collected to measure patient disease biomarkers. Results: Between 2013 and 2015, the indexes measuring quality of health care, patient health knowledge, and diabetes self-management activities rose moderately but significantly (from 0.54 to 0.64, 0.80 to 0.84, and 0.62 to 0.67, respectively). Performing self-care activities – including owning and using a glucometer and belonging to a disease support group – saw the highest increase (from 0.65 to 0.75). A1C levels increased between 2013 and 2015 from 7.95 to 8.41% (63–68 mmol/mol) (P<0.001), and blood pressure decreased between 2014 and 2015 from 143.7/76.8 to 137.5/74.4 (systolic/diastolic reported in mmHg) (P<0.001). The mean levels of other disease biomarkers remained statistically unchanged, despite the improvements seen in the previous “links” of the educational chain. Conclusion: Online CME can effect certain changes in the educational chain linking quality of health care, patient knowledge, and self-management behaviors. However, in order to assure adequate NCD control, the entire health care system must be improved in tandem. Online CME programs, such as CASALUD’s, are feasible strategies for impacting changes in disease self-management at a clinic level throughout a country. Keywords: chronic disease, health education, type 2 diabetes mellitus, Mexico, continuing medical education, primary care&nbsp
    corecore