57 research outputs found
Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis
Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify “phenotypic signatures”, which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent “connectors” between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways
Systematic Analysis of Pleiotropy in C. elegans Early Embryogenesis
Pleiotropy refers to the phenomenon in which a single gene controls several distinct, and seemingly unrelated, phenotypic effects. We use C. elegans early embryogenesis as a model to conduct systematic studies of pleiotropy. We analyze high-throughput RNA interference (RNAi) data from C. elegans and identify “phenotypic signatures”, which are sets of cellular defects indicative of certain biological functions. By matching phenotypic profiles to our identified signatures, we assign genes with complex phenotypic profiles to multiple functional classes. Overall, we observe that pleiotropy occurs extensively among genes involved in early embryogenesis, and a small proportion of these genes are highly pleiotropic. We hypothesize that genes involved in early embryogenesis are organized into partially overlapping functional modules, and that pleiotropic genes represent “connectors” between these modules. In support of this hypothesis, we find that highly pleiotropic genes tend to reside in central positions in protein-protein interaction networks, suggesting that pleiotropic genes act as connecting points between different protein complexes or pathways
Monoallelic Expression of Multiple Genes in the CNS
The inheritance pattern of a number of major genetic disorders suggests the possible involvement of genes that are expressed from one allele and silent on the other, but such genes are difficult to detect. Since DNA methylation in regulatory regions is often a mark of gene silencing, we modified existing microarray-based assays to detect both methylated and unmethylated DNA sequences in the same sample, a variation we term the MAUD assay. We probed a 65 Mb region of mouse Chr 7 for gene-associated sequences that show two distinct DNA methylation patterns in the mouse CNS. Selected genes were then tested for allele-specific expression in clonal neural stem cell lines derived from reciprocal F1 (C57BL/6×JF1) hybrid mice. In addition, using a separate approach, we directly analyzed allele-specific expression of a group of genes interspersed within clusters of OlfR genes, since the latter are subject to allelic exclusion. Altogether, of the 500 known genes in the chromosomal region surveyed, five show monoallelic expression, four identified by the MAUD assay (Agc1, p (pink-eyed dilution), P4ha3 and Thrsp), and one by its proximity to OlfR genes (Trim12). Thrsp (thyroid hormone responsive SPOT14 homolog) is expressed in hippocampus, but the human protein homolog, S14, has also been implicated in aggressive breast cancer. Monoallelic expression of the five genes is not coordinated at a chromosome-wide level, but rather regulated at individual loci. Taken together, our results suggest that at least 1% of previously untested genes are subject to allelic exclusion, and demonstrate a dual approach to expedite their identification
Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation
Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear β-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis
Chromosomal deletion complexes in mice by radiation of embryonic stem cells.
Chromosomal deletions (deficiencies\u27) are powerful tools in the genetic analysis of complex genomes. They have been exploited extensively in Drosophila melanogaster, an organism in which deficiencies can be efficiently induced and selected. Spontaneous deletions in humans have facilitated the dissection of phenotypes in contiguous gene syndromes and led to the positional cloning of critical genes. In mice, deletion complexes created by whole animal irradiation experiments have enabled a systematic characterization of functional units along defined chromosomal regions. However, classical mutagenesis in mice is logistically impractical for generating deletion sets on a genome-wide scale. Here, we report a high-throughput method for generating radiation-induced deletion complexes at defined regions in the genome using ES cells. Dozens of deletions of up to several centiMorgans, encompassing a specific locus, can be created in a single experiment and transmitted through the germline. The ability to rapidly create deletion complexes along chromosomes will facilitate systematic functional analyses of the mammalian genome
- …