248 research outputs found
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
Diagnosing Gender Bias in Image Recognition Systems
Image recognition systems offer the promise to learn from images at scale without requiring expert knowledge. However, past research suggests that machine learning systems often produce biased output. In this article, we evaluate potential gender biases of commercial image recognition platforms using photographs of U.S. members of Congress and a large number of Twitter images posted by these politicians. Our crowdsourced validation shows that commercial image recognition systems can produce labels that are correct and biased at the same time as they selectively report a subset of many possible true labels. We find that images of women received three times more annotations related to physical appearance. Moreover, women in images are recognized at substantially lower rates in comparison with men. We discuss how encoded biases such as these affect the visibility of women, reinforce harmful gender stereotypes, and limit the validity of the insights that can be gathered from such data
Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease
Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim
of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases
Diagnostic and cost utility of whole exome sequencing in peripheral neuropathy.
OBJECTIVE: To explore the diagnostic utility and cost effectiveness of whole exome sequencing (WES) in a cohort of individuals with peripheral neuropathy. METHODS: Singleton WES was performed in individuals recruited though one pediatric and one adult tertiary center between February 2014 and December 2015. Initial analysis was restricted to a virtual panel of 55 genes associated with peripheral neuropathies. Patients with uninformative results underwent expanded analysis of the WES data. Data on the cost of prior investigations and assessments performed for diagnostic purposes in each patient was collected. RESULTS: Fifty patients with a peripheral neuropathy were recruited (median age 18 years; range 2-68 years). The median time from initial presentation to study enrollment was 6 years 9 months (range 2 months-62 years), and the average cost of prior investigations and assessments for diagnostic purposes AU$4013 per patient. Eleven individuals received a diagnosis from the virtual panel. Eight individuals received a diagnosis following expanded analysis of the WES data, increasing the overall diagnostic yield to 38%. Two additional individuals were diagnosed with pathogenic copy number variants through SNP microarray. CONCLUSIONS: This study provides evidence that WES has a high diagnostic utility and is cost effective in patients with a peripheral neuropathy. Expanded analysis of WES data significantly improves the diagnostic yield in patients in whom a diagnosis is not found on the initial targeted analysis. This is primarily due to diagnosis of conditions caused by newly discovered genes and the resolution of complex and atypical phenotypes
A statistical framework for integrating two microarray data sets in differential expression analysis
<p>Abstract</p> <p>Background</p> <p>Different microarray data sets can be collected for studying the same or similar diseases. We expect to achieve a more efficient analysis of differential expression if an efficient statistical method can be developed for integrating different microarray data sets. Although many statistical methods have been proposed for data integration, the genome-wide concordance of different data sets has not been well considered in the analysis.</p> <p>Results</p> <p>Before considering data integration, it is necessary to evaluate the genome-wide concordance so that misleading results can be avoided. Based on the test results, different subsequent actions are suggested. The evaluation of genome-wide concordance and the data integration can be achieved based on the normal distribution based mixture models.</p> <p>Conclusion</p> <p>The results from our simulation study suggest that misleading results can be generated if the genome-wide concordance issue is not appropriately considered. Our method provides a rigorous parametric solution. The results also show that our method is robust to certain model misspecification and is practically useful for the integrative analysis of differential expression.</p
Deconstructing Insight: EEG Correlates of Insightful Problem Solving
Background:
Cognitive insight phenomenon lies at the core of numerous discoveries. Behavioral research indicates four salient features of insightful problem solving: (i) mental impasse, followed by (ii) restructuring of the problem representation, which leads to (iii) a deeper understanding of the problem, and finally culminates in (iv) an “Aha!” feeling of suddenness and obviousness of the solution. However, until now no efforts have been made to investigate the neural mechanisms of these constituent features of insight in a unified framework.
Methodology/Principal Findings:
In an electroencephalographic study using verbal remote associate problems, we identified neural correlates of these four features of insightful problem solving. Hints were provided for unsolved problems or after mental impasse. Subjective ratings of the restructuring process and the feeling of suddenness were obtained on trial-by-trial basis. A negative correlation was found between these two ratings indicating that sudden insightful solutions, where restructuring is a key feature, involve automatic, subconscious recombination of information. Electroencephalogram signals were analyzed in the space×time×frequency domain with a nonparametric cluster randomization test. First, we found strong gamma band responses at parieto-occipital regions which we interpreted as (i) an adjustment of selective attention (leading to a mental impasse or to a correct solution depending on the gamma band power level) and (ii) encoding and retrieval processes for the emergence of spontaneous new solutions. Secondly, we observed an increased upper alpha band response in right temporal regions (suggesting active suppression of weakly activated solution relevant information) for initially unsuccessful trials that after hint presentation led to a correct solution. Finally, for trials with high restructuring, decreased alpha power (suggesting greater cortical excitation) was observed in right prefrontal area.
Conclusions/Significance:
Our results provide a first account of cognitive insight by dissociating its constituent components and potential neural correlates
Model-Based Deconvolution of Cell Cycle Time-Series Data Reveals Gene Expression Details at High Resolution
In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure “just-in-time” assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational method to extract “single-cell”-like information from population-level time-series expression data. This method removes the effects of 1) variance in growth rate and 2) variance in the physiological and developmental state of the cell. Moreover, this method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of temporal regulation in a cell
The effects of multi-domain versus single-domain cognitive training in non-demented older people: a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Whether healthy older people can benefit from cognitive training (CogTr) remains controversial. This study explored the benefits of CogTr in community dwelling, healthy, older adults and compared the effects of single-domain with multi-domain CogTr interventions.</p> <p>Methods</p> <p>A randomized, controlled, 3-month trial of CogTr with double-blind assessments at baseline and immediate, 6-month and 12-month follow-up after training completion was conducted. A total of 270 healthy Chinese older people, 65 to 75 years old, were recruited from the Ganquan-area community in Shanghai. Participants were randomly assigned to three groups: multi-domain CogTr, single-domain CogTr, and a wait-list control group. Twenty-four sessions of CogTr were administrated to the intervention groups over a three-month period. Six months later, three booster training sessions were offered to 60% of the initial training participants. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS, Form A), the Color Word Stroop test (CWST), the Visual Reasoning test and the Trail Making test (TMT) were used to assess cognitive function.</p> <p>Results</p> <p>Multi-domain CogTr produced statistically significant training effects on RBANS, visual reasoning, and immediate and delayed memory, while single-domain CogTr showed training effects on RBANS, visual reasoning, word interference, and visuospatial/constructional score (all <it>P </it>< 0.05). At the 12-month posttest, the multi-domain CogTr showed training effects on RBANS, delayed memory and visual reasoning, while single-domain CogTr only showed effects on word interference. Booster training resulted in effects on RBANS, visual reasoning, time of trail making test, and visuospatial/constructional index score.</p> <p>Conclusions</p> <p>Cognitive training can improve memory, visual reasoning, visuospatial construction, attention and neuropsychological status in community-living older people and can help maintain their functioning over time. Multi-domain CogTr enhanced memory proficiency, while single-domain CogTr augmented visuospatial/constructional and attention abilities. Multi-domain CogTr had more advantages in training effect maintenance.</p> <p>Clinical Trial Registration</p> <p>Chinese Clinical Trial Registry. Registration number: ChiCTR-TRC-09000732.</p
- …
