20 research outputs found

    Modelling Hurricane Exposure and Wind Speed on a Mesoclimate Scale: A Case Study from Cusuco NP, Honduras

    Get PDF
    High energy weather events are often expected to play a substantial role in biotic community dynamics and large scale diversity patterns but their contribution is hard to prove. Currently, observations are limited to the documentation of accidental records after the passing of such events. A more comprehensive approach is synthesising weather events in a location over a long time period, ideally at a high spatial resolution and on a large geographic scale. We provide a detailed overview on how to generate hurricane exposure data at a meso-climate level for a specific region. As a case study we modelled landscape hurricane exposure in Cusuco National Park (CNP), Honduras with a resolution of 50 m×50 m patches. We calculated actual hurricane exposure vulnerability site scores (EVVS) through the combination of a wind pressure model, an exposure model that can incorporate simple wind dynamics within a 3-dimensional landscape and the integration of historical hurricanes data. The EVSS was calculated as a weighted function of sites exposure, hurricane frequency and maximum wind velocity. Eleven hurricanes were found to have affected CNP between 1995 and 2010. The highest EVSS's were predicted to be on South and South-East facing sites of the park. Ground validation demonstrated that the South-solution (i.e. the South wind inflow direction) explained most of the observed tree damage (90% of the observed tree damage in the field). Incorporating historical data to the model to calculate actual hurricane exposure values, instead of potential exposure values, increased the model fit by 50%

    Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance

    Get PDF
    Background: In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds – the most detrimental disturbance agent in Europe – monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Methodology/Principal Findings: Here we show that growth reduction was significant and pervasive in a 6.79?million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10 % in the worst hit regions, and was closely related to maximum gust wind speed (R 2 = 0.849) and structural wind damage (R 2 = 0.782). At the landscape scale, windrelated growth reduction amounted to 3.0 million m 3 in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden

    Forest biodiversity, ecosystem functioning and the provision of ecosystem services

    Get PDF
    Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services

    Patch dynamics and community metastability of a subtropical forest: Compound effects of natural disturbance and human land use

    No full text
    Where large disturbances do not cause landscape-wide mortality and successional change, forested ecosystems should exhibit landscape metastability (landscape equilibrium) at a scale equal to the dominant patch size of disturbance and recovery within the landscape. We investigated this in a 16-ha contiguous plot of subtropical wet forest in Puerto Rico, the Luquillo Forest Dynamics Plot (LFDP), which experienced two major hurricanes during the 15-year study and has a land use history (logging and agriculture 40 or more years ago) that differs in intensity between two areas of the plot. Using he LFDP as our “landscape,” we studied the spatial pattern of community change through time (3–5 year intervals) by calculating community dissimilarity between tree censuses for two size classes of trees (1 to <10 cm DBH and ≥10 cm DBH) in quadrats ranging in size from 0.010–1 ha and for the entire landscape, i.e., plot or land use type. The point at which the decline in community dissimilarity with quadrat size showed maximum curvature identified the dominant patch size (i.e., point of metastability). For canopy trees ≥10 cm dbh, there was no evidence that the community experienced landscape-wide successional changes in either land use type, and we found a consistent patch size of community change around 0.1 ha (range 0.091 – 0.107). For the understory tree and shrub community (1 to <10 cm dbh) there was some evidence of landscape-wide community changes over time in response to hurricane damage, apparently driven by interactions with the dominant canopy species, whose composition varied with land use intensity, and their species-specific susceptibility to hurricane damage
    corecore