44 research outputs found

    External Ocular Surface Bacterial Isolates and their Antimicrobial Susceptibility Patterns among Pre-operative Cataract Patients at Mulago National Hospital in Kampala, Uganda.

    Get PDF
    Endophthalmitis is a severe complication of cataract surgery which leads to high ocular morbidity and visual loss even with antibiotic treatment. Bacterial ocular floras are the implicated causative agents. This study was undertaken to evaluate the external ocular surface bacterial isolates and their antimicrobial susceptibility patterns among pre-operative cataract patients at Mulago National Hospital. This cross sectional study enrolled consecutively 131 patients scheduled for routine cataract surgery in the Department of Ophthalmology at Mulago National Hospital in Kampala, Uganda. Eyelid margin and conjunctival swabs were collected and processed using standard microbiological procedures to identify bacterial isolates and their respective antimicrobial susceptibility patterns. Of 131 patients involved (mean age 63.3 ± 14.5 years), 54.2% (71/131) were females. The eyelid margin and conjunctival samples were culture positive in 59.5% (78/138) and 45.8% (60/138) respectively. The most common organisms identified were Coagulase-negative Staphylococci (CoNS) [65.9% (91/138)] and Staphylococcus aureus [21.0% (29/138)]. CoNS showed the highest resistance to tetracycline (58.2%, 53/91) and erythromycin (38.5%, 35/91), whereas in S. aureus the resistance to tetracycline and erythromycin were 55.2% (16/29) and 31.0% (9/29) respectively. Methicillin resistant CoNS (MRS) and Methicillin resistance S. aureus (MRSA) were 31.9% (29/91) and 27.6% (8/29) respectively. There were low resistance rates for CoNS, S. aureus and other bacterial isolates to ciprofloxacin (11.1%-24.2%), gentamicin (5.6-31.0%), tobramycin (17.2% -25.3%) and vancomycin (0.0%). CoNS and S. aureus are the most common bacterial isolates found on the external ocular surface of the pre-operative cataract patients. Ciprofloxacin, gentamicin, tobramycin and vancomycin showed the lowest resistance rates to all bacterial isolates, therefore may be used to reduce bacteria load in the conjunctiva sac among cataract patients prior to surgery

    Molecular Analysis of Repeated Methicillin-Resistant Staphylococcus aureus Infections in Children

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen that causes severe morbidity and mortality in hospitalized patients. It is unclear whether repeated MRSA infections in pediatric patients are caused by relapse of previous infecting strains or by acquiring new strains from extrinsic sources. The study aimed to define the genetic relatedness of MRSA isolates from children with repeated infections. METHODOLOGY/PRINCIPAL FINDINGS: Children with multiple MRSA infections during 2004-2006 were identified in a teaching hospital. Repeated infections were confirmed by chart review and the responsible isolates were genotyped and screened for Panton-Valentine leukocidin (PVL) genes. Two consecutive episodes comprised an infection pair, and strain relatedness was defined for each pair as indistinguishable, highly related, or distinct if the isolates were of the same subtype, the same genotype, or different genotype, respectively. A total of 114 episodes comprising 66 infection pairs were identified in 48 children. The interval of infection pairs ranged from 15 days to 346 days, with a median duration of 57.5 days. Genotypings classified all isolates into 7 genotypes and 31 subtypes. Of 66 pairs, 46 (69.7%), 13 (19.7%) and 7 (10.6%) pairs were caused by indistinguishable, highly related and distinct strains, respectively. Subsequent infections caused by indistinguishable strains were more common for PVL-positive strains (17/18, 94.4%) than for PVL-negative strains (29/48, 60.4%, P = 0.007). The strain relatedness was not affected by the durations of interval between infections. CONCLUSIONS/SIGNIFICANCE: Most repeated MRSA infections in children are caused by indistinguishable strains even after a long period of interval, suggesting that persistent carriage and relapse of initial infecting strains were responsible for the majority of recurrent MRSA infections

    Dynamics of ampicillin-resistant Enterococcus faecium clones colonizing hospitalized patients: data from a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the dynamics of colonizing <it>Enterococcus faecium </it>clones during hospitalization, invasive infection and after discharge.</p> <p>Methods</p> <p>In a prospective observational study we compared intestinal <it>E. faecium </it>colonization in three patient cohorts: 1) Patients from the Hematology Unit at the University Hospital Basel (UHBS), Switzerland, were investigated by weekly rectal swabs (RS) during hospitalization (group 1a, n = 33) and monthly after discharge (group 1b, n = 21). 2) Patients from the Intensive Care Unit (ICU) at the University Medical Center Utrecht, the Netherlands (group 2, n = 25) were swabbed weekly. 3) Patients with invasive <it>E. faecium </it>infection at UHBS were swabbed at the time of infection (group 3, n = 22). From each RS five colonies with typical <it>E</it>. <it>faecium </it>morphology were picked. Species identification was confirmed by PCR and ampicillin-resistant <it>E. faecium </it>(ARE) isolates were typed using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA). The Simpson's Index of Diversity (SID) was calculated.</p> <p>Results</p> <p>Out of 558 ARE isolates from 354 RS, MT159 was the most prevalent clone (54%, 100%, 52% and 83% of ARE in groups 1a, 1b, 2 and 3, respectively). Among hematological inpatients 13 (40%) had ARE. During hospitalization, the SID of MLVA-typed ARE decreased from 0.745 [95%CI 0.657-0.833] in week 1 to 0.513 [95%CI 0.388-0.637] in week 3. After discharge the only detected ARE was MT159 in 3 patients. In the ICU (group 2) almost all patients (84%) were colonized with ARE. The SID increased significantly from 0.373 [95%CI 0.175-0.572] at week 1 to a maximum of 0.808 [95%CI 0.768-0.849] at week 3 due to acquisition of multiple ARE clones. All 16 patients with invasive ARE were colonized with the same MLVA clone (<it>p </it>< 0.001).</p> <p>Conclusions</p> <p>In hospitalized high-risk patients MT159 is the most frequent colonizer and cause of invasive <it>E. faecium </it>infections. During hospitalization, ASE are quickly replaced by ARE. Diversity of ARE increases on units with possible cross-transmission such as ICUs. After hospitalization ARE are lost with the exception of MT159. In invasive infections, the invasive clone is the predominant gut colonizer.</p

    Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters

    Get PDF
    BACKGROUND: Hospital-acquired infections (HAI) are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predict HAI that was derived from Logistic Regression (LR) and validated by Artificial Neural Networks (ANN) simultaneously. METHODOLOGY/PRINCIPAL FINDINGS: A total of 476 patients from all the 806 HAI inpatients were included for the study between 2004 and 2005. A sample of 1,376 non-HAI inpatients was randomly drawn from all the admitted patients in the same period of time as the control group. External validation of 2,500 patients was abstracted from another academic teaching center. Sixteen variables were extracted from the Electronic Health Records (EHR) and fed into ANN and LR models. With stepwise selection, the following seven variables were identified by LR models as statistically significant: Foley catheterization, central venous catheterization, arterial line, nasogastric tube, hemodialysis, stress ulcer prophylaxes and systemic glucocorticosteroids. Both ANN and LR models displayed excellent discrimination (area under the receiver operating characteristic curve [AUC]: 0.964 versus 0.969, p = 0.507) to identify infection in internal validation. During external validation, high AUC was obtained from both models (AUC: 0.850 versus 0.870, p = 0.447). The scoring system also performed extremely well in the internal (AUC: 0.965) and external (AUC: 0.871) validations. CONCLUSIONS: We developed a scoring system to predict HAI with simple parameters validated with ANN and LR models. Armed with this scoring system, infectious disease specialists can more efficiently identify patients at high risk for HAI during hospitalization. Further, using parameters either by observation of medical devices used or data obtained from EHR also provided good prediction outcome that can be utilized in different clinical settings

    Do Neutrophils Play a Role in Establishing Liver Abscesses and Distant Metastases Caused by Klebsiella pneumoniae?

    Get PDF
    Serotype K1 Klebsiella pneumoniae is a major cause of liver abscesses and endophthalmitis. This study was designed to identify the role of neutrophils in the development of distant metastatic complications that were caused by serotype K1 K. pneumoniae. An in vitro cellular model was used to assess serum resistance and neutrophil-mediated killing. BALB/c mice were injected with neutrophils containing phagocytosed K. pneumoniae. Serotype K1 K. pneumoniae was significantly more resistant to serum killing, neutrophil-mediated phagocytosis and intra-cellular killing than non-K1 isolates (p<0.01). Electron microscopic examination had similar findings as in the bioassay findings. Intraperitoneal injection of neutrophils containing phagocytosed serotype K1 K. pneumoniae led to abscess formation in multiple sites including the subcutaneous tissue, lung, and liver, whereas no abscess formation was observed in mice injected with non-K1 isolates. The resistance of serotype K1 K. pneumoniae to complement- and neutrophil-mediated intracellular killing results in the dissemination of K. pneumoniae via the bloodstream. Escape from neutrophil intracellular killing may contribute to the dissemination and establishment of distant metastases. Thus, neutrophils play a role as a vehicle for helping K. pneumoniae and contributing to the establishment of liver abscess and distant metastatic complications

    Active and Passive Immunization Protects against Lethal, Extreme Drug Resistant-Acinetobacter baumannii Infection

    Get PDF
    Extreme-drug-resistant (XDR) Acinetobacter baumannii is a rapidly emerging pathogen causing infections with unacceptably high mortality rates due to inadequate available treatment. New methods to prevent and treat such infections are a critical unmet medical need. To conduct a rational vaccine discovery program, OmpA was identified as the primary target of humoral immune response after intravenous infection by A. baumannii in mice. OmpA was >99% conserved at the amino acid level across clinical isolates harvested between 1951 and 2009 from cerebrospinal fluid, blood, lung, and wound infections, including carbapenem-resistant isolates, and was ≥89% conserved among other sequenced strains, but had minimal homology to the human proteome. Vaccination of diabetic mice with recombinant OmpA (rOmpA) with aluminum hydroxide adjuvant markedly improved survival and reduced tissue bacterial burden in mice infected intravenously. Vaccination induced high titers of anti-OmpA antibodies, the levels of which correlated with survival in mice. Passive transfer with immune sera recapitulated protection. Immune sera did not enhance complement-mediated killing but did enhance opsonophagocytic killing of A. baumannii. These results define active and passive immunization strategies to prevent and treat highly lethal, XDR A. baumannii infections

    Altered Resting State in Diabetic Neuropathic Pain

    Get PDF
    BACKGROUND: The spontaneous component of neuropathic pain (NP) has not been explored sufficiently with neuroimaging techniques, given the difficulty to coax out the brain components that sustain background ongoing pain. Here, we address for the first time the correlates of this component in an fMRI study of a group of eight patients suffering from diabetic neuropathic pain and eight healthy control subjects. Specifically, we studied the functional connectivity that is associated with spontaneous neuropathic pain with spatial independent component analysis (sICA). PRINCIPAL FINDINGS: Functional connectivity analyses revealed a cortical network consisting of two anti-correlated patterns: one includes the left fusiform gyrus, the left lingual gyrus, the left inferior temporal gyrus, the right inferior occipital gyrus, the dorsal anterior cingulate cortex bilaterally, the pre and postcentral gyrus bilaterally, in which its activity is correlated negatively with pain and positively with the controls; the other includes the left precuneus, dorsolateral prefrontal, frontopolar cortex (both bilaterally), right superior frontal gyrus, left inferior frontal gyrus, thalami, both insulae, inferior parietal lobuli, right mammillary body, and a small area in the left brainstem, in which its activity is correlated positively with pain and negatively with the controls. Furthermore, a power spectra analyses revealed group differences in the frequency bands wherein the sICA signal was decomposed: patients' spectra are shifted towards higher frequencies. CONCLUSION: In conclusion, we have characterized here for the first time a functional network of brain areas that mark the spontaneous component of NP. Pain is the result of aberrant default mode functional connectivity

    Significant Effects of Antiretroviral Therapy on Global Gene Expression in Brain Tissues of Patients with HIV-1-Associated Neurocognitive Disorders

    Get PDF
    Antiretroviral therapy (ART) has reduced morbidity and mortality in HIV-1 infection; however HIV-1-associated neurocognitive disorders (HAND) persist despite treatment. The reasons for the limited efficacy of ART in the brain are unknown. Here we used functional genomics to determine ART effectiveness in the brain and to identify molecular signatures of HAND under ART. We performed genome-wide microarray analysis using Affymetrix U133 Plus 2.0 Arrays, real-time PCR, and immunohistochemistry in brain tissues from seven treated and eight untreated HAND patients and six uninfected controls. We also determined brain virus burdens by real-time PCR. Treated and untreated HAND brains had distinct gene expression profiles with ART transcriptomes clustering with HIV-1-negative controls. The molecular disease profile of untreated HAND showed dysregulated expression of 1470 genes at p<0.05, with activation of antiviral and immune responses and suppression of synaptic transmission and neurogenesis. The overall brain transcriptome changes in these patients were independent of histological manifestation of HIV-1 encephalitis and brain virus burdens. Depending on treatment compliance, brain transcriptomes from patients on ART had 83% to 93% fewer dysregulated genes and significantly lower dysregulation of biological pathways compared to untreated patients, with particular improvement indicated for nervous system functions. However a core of about 100 genes remained similarly dysregulated in both treated and untreated patient brain tissues. These genes participate in adaptive immune responses, and in interferon, cell cycle, and myelin pathways. Fluctuations of cellular gene expression in the brain correlated in Pearson's formula analysis with plasma but not brain virus burden. Our results define for the first time an aberrant genome-wide brain transcriptome of untreated HAND and they suggest that antiretroviral treatment can be broadly effective in reducing pathophysiological changes in the brain associated with HAND. Aberrantly expressed transcripts common to untreated and treated HAND may contribute to neurocognitive changes defying ART

    Hospital-community interactions foster coexistence between methicillin-resistant strains of Staphylococcus aureus

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of morbidity and mortality in both hospitals and the community. Traditionally, MRSA was mainly hospital-associated (HA-MRSA), but in the past decade community-associated strains (CA-MRSA) have spread widely. CA-MRSA strains seem to have significantly lower biological costs of resistance, and hence it has been speculated that they may replace HA-MRSA strains in the hospital. Such a replacement could potentially have major consequences for public health, as there are differences in the resistance spectra of the two strains as well as possible differences in their clinical effects. Here we assess the impact of competition between HA- and CA-MRSA using epidemiological models which integrate realistic data on drug-usage frequencies, resistance profiles, contact, and age structures. By explicitly accounting for the differing antibiotic usage frequencies in the hospital and the community, we find that coexistence between the strains is a possible outcome, as selection favors CA-MRSA in the community, because of its lower cost of resistance, while it favors HA-MRSA in the hospital, because of its broader resistance spectrum. Incorporating realistic degrees of age- and treatment-structure into the model significantly increases the parameter ranges over which coexistence is possible. Thus, our results indicate that the large heterogeneities existing in human populations make coexistence between hospital- and community-associated strains of MRSA a likely outcome
    corecore