1,181 research outputs found
A Universal Two--Bit Gate for Quantum Computation
We prove the existence of a class of two--input, two--output gates any one of
which is universal for quantum computation. This is done by explicitly
constructing the three--bit gate introduced by Deutsch [Proc.~R.~Soc.~London.~A
{\bf 425}, 73 (1989)] as a network consisting of replicas of a single two--bit
gate.Comment: 3 pages, RevTeX, two figures in a uuencoded fil
Optimal purification of single qubits
We introduce a new decomposition of the multiqubit states of the form
and employ it to construct the optimal single qubit
purification procedure. The same decomposition allows us to study optimal
quantum cloning and state estimation of mixed states.Comment: 4 pages, 1 figur
Analysis and interpretation of high transverse entanglement in optical parametric down conversion
Quantum entanglement associated with transverse wave vectors of down
conversion photons is investigated based on the Schmidt decomposition method.
We show that transverse entanglement involves two variables: orbital angular
momentum and transverse frequency. We show that in the monochromatic limit high
values of entanglement are closely controlled by a single parameter resulting
from the competition between (transverse) momentum conservation and
longitudinal phase matching. We examine the features of the Schmidt eigenmodes,
and indicate how entanglement can be enhanced by suitable mode selection
methods.Comment: 4 pages, 4 figure
Quantal interferometry with dissipative internal motion
In presence of dissipation, quantal states may acquire complex-valued phase
effects. We suggest a notion of dissipative interferometry that accommodates
this complex-valued structure and that may serve as a tool for analyzing the
effect of certain kinds of external influences on quantal interference. The
concept of mixed-state phase and concomitant gauge invariance is extended to
dissipative internal motion. The resulting complex-valued mixed-state
interference effects lead to well-known results in the unitary limit and in the
case of dissipative motion of pure quantal states. Dissipative interferometry
is applied to fault-tolerant geometric quantum computation.Comment: Slight revision, journal reference adde
Classical Concepts in Quantum Programming
The rapid progress of computer technology has been accompanied by a
corresponding evolution of software development, from hardwired components and
binary machine code to high level programming languages, which allowed to
master the increasing hardware complexity and fully exploit its potential.
This paper investigates, how classical concepts like hardware abstraction,
hierarchical programs, data types, memory management, flow of control and
structured programming can be used in quantum computing. The experimental
language QCL will be introduced as an example, how elements like irreversible
functions, local variables and conditional branching, which have no direct
quantum counterparts, can be implemented, and how non-classical features like
the reversibility of unitary transformation or the non-observability of quantum
states can be accounted for within the framework of a procedural programming
language.Comment: 11 pages, 4 figures, software available from
http://tph.tuwien.ac.at/~oemer/qcl.html, submitted for QS2002 proceeding
Quantum key distribution over 30km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods
We present a full implementation of a quantum key distribution system using
energy-time entangled photon pairs and functioning with a 30km standard telecom
fiber quantum channel. Two bases of two orthogonal states are implemented and
the setup is quite robust to environmental constraints such as temperature
variation. Two different ways to manage chromatic dispersion in the quantum
channel are discussed.Comment: 10 pages, 4 figure
Quantum Cryptography with Coherent States
The safety of a quantum key distribution system relies on the fact that any
eavesdropping attempt on the quantum channel creates errors in the
transmission. For a given error rate, the amount of information that may have
leaked to the eavesdropper depends on both the particular system and the
eavesdropping strategy. In this work, we discuss quantum cryptographic
protocols based on the transmission of weak coherent states and present a new
system, based on a symbiosis of two existing ones, and for which the
information available to the eavesdropper is significantly reduced. This system
is therefore safer than the two previous ones. We also suggest a possible
experimental implementation.Comment: 20 pp. Revtex, Figures available from the authors upon request, To be
published in PRA (March 95
Experimental demonstration of an efficient quantum phase-covariant cloning and its possible applications to simulating eavesdropping in quantum cryptography
We describe a nuclear magnetic resonance (NMR) experiment which implements an
efficient one-to-two qubit phase-covariant cloning machine(QPCCM). In the
experiment we have achieved remarkably high fidelities of cloning, 0.848 and
0.844 respectively for the original and the blank qubit. This experimental
value is close to the optimal theoretical value of 0.854. We have also
demonstrated how to use our phase-covariant cloning machine for quantum
simulations of bit by bit eavesdropping in the four-state quantum key
distribution protocol.Comment: 4 pages, 5 figure
Schmidt Analysis of Pure-State Entanglement
We examine the application of Schmidt-mode analysis to pure state
entanglement. Several examples permitting exact analytic calculation of Schmidt
eigenvalues and eigenfunctions are included, as well as evaluation of the
associated degree of entanglement.Comment: 5 pages, 3 figures, for C.M. Bowden memoria
Robust Multi-Partite Multi-Level Quantum Protocols
We present a tripartite three-level state that allows a secret sharing
protocol among the three parties, or a quantum key distribution protocol
between any two parties. The state used in this scheme contains entanglement
even after one system is traced out. We show how to utilize this residual
entanglement for quantum key distribution purposes, and propose a realization
of the scheme using entanglement of orbital angular momentum states of photons.Comment: 9 pages, 2 figure
- …