1,498 research outputs found

    Compositional Uncertainty in Deep Gaussian Processes

    Get PDF
    Gaussian processes (GPs) are nonparametric priors over functions. Fitting a GP implies computing a posterior distribution of functions consistent with the observed data. Similarly, deep Gaussian processes (DGPs) should allow us to compute a posterior distribution of compositions of multiple functions giving rise to the observations. However, exact Bayesian inference is intractable for DGPs, motivating the use of various approximations. We show that the application of simplifying mean-field assumptions across the hierarchy leads to the layers of a DGP collapsing to near-deterministic transformations. We argue that such an inference scheme is suboptimal, not taking advantage of the potential of the model to discover the compositional structure in the data. To address this issue, we examine alternative variational inference schemes allowing for dependencies across different layers and discuss their advantages and limitations.Comment: 17 page

    Aligned Multi-Task Gaussian Process

    Get PDF
    Multi-task learning requires accurate identification of the correlations between tasks. In real-world time-series, tasks are rarely perfectly temporally aligned; traditional multi-task models do not account for this and subsequent errors in correlation estimation will result in poor predictive performance and uncertainty quantification. We introduce a method that automatically accounts for temporal misalignment in a unified generative model that improves predictive performance. Our method uses Gaussian processes (GPs) to model the correlations both within and between the tasks. Building on the previous work by Kazlauskaiteet al. [2019], we include a separate monotonic warp of the input data to model temporal misalignment. In contrast to previous work, we formulate a lower bound that accounts for uncertainty in both the estimates of the warping process and the underlying functions. Also, our new take on a monotonic stochastic process, with efficient path-wise sampling for the warp functions, allows us to perform full Bayesian inference in the model rather than MAP estimates. Missing data experiments, on synthetic and real time-series, demonstrate the advantages of accounting for misalignments (vs standard unaligned method) as well as modelling the uncertainty in the warping process(vs baseline MAP alignment approach)
    • …
    corecore