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Abstract

We present a variational inference scheme to learn a model that solves the Schrödinger
Bridge Problem (SBP). In contrast to previous work, our approach is solver-agnostic and
guarantees solutions that respect the prior beyond the first fitting iteration. Having this
solution allows us to generate new samples from one of the distributions by first sampling
from the other one and then solving the dynamical system. We show that our model is
able to learn the transformation between the Gaussian distribution and arbitrary data, as
well as learning dynamics that follow a potential function.

1. Introduction and motivation

The Schrödinger bridge problem (SBP) (Schrödinger, 1931, 1933) seeks to find a transfor-
mation between two probability distributions. It has both a static version, where a direct
transformation is obtained, and a dynamic version, where the flows between the two distri-
butions are learned. Recent works (De Bortoli et al., 2021; Vargas et al., 2021; Chen et al.,
2021) have tackled this dynamic scenario.

Finding these flows can be done using the Iterative Proportional Fitting Procedure
(IPFP) (Fortet, 1940; Kullback, 1968; Cramer, 2000), that iteratively optimizes each process
so that the Kullback-Leibler divergence (DKL) between the two processes is minimized at
each iteration. One way to do this is to update the joint density of the problem using the
potentials of the dual representation of the SBP. Approximating these coupled potentials
requires estimating an integral involving them, which in higher dimensional problems can
be difficult.

The thorough approach of De Bortoli et al. (2021) uses another representation that
can more easily be applied where samples of both boundary distributions are available.
This tackles the Schrödinger bridge as an iterative mean-matching procedure, where at
each iteration, the mean of the reversed forwards process is matched with the mean of
the backward process. This requires assuming that at each time-step, the change in the
state is small, so that the Euler-Maruyama discretization of the process is valid. Using a
small enough time-step ensures this. However, if the time-step is not small enough, it can
lead to stability issues. Additionally, while this model is regularized using a prior diffusion
process, this regularization is only directly applied in the first iteration. This can lead to
the learned dynamics differing wildly from the prior, especially when they are represented
by unbounded functions (such as neural networks).

Our model seeks to address these issues by learning the dynamics of the two processes in
a way that is independent of the solver used, and so better solvers become available, while
also maintaining the regularization in every iteration.
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2. Solving the SBP with shooting variables
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Figure 1: Diagram of the model, when optimizing the forward process. Firstly, a solution to the
backward process is obtained using the solver (blue). Then {si}N−1

i=0 are sampled from the variational
distribution (black) which are then solved forwards one step using the forward process to obtain
{xi}Ni=1 (red). Finally, the parameters of the variational distribution and the forward process are
optimized so that both si and xi match their corresponding yi.

Writing the two boundary distributions as p0 and pT , we define the process that trans-
forms the first into the second as the forward process

dyt = fk(yt)dt+ γtdBt , (1)

where k is the IPFP iteration, fk : Rd → Rd is the drift function, Bt is the Brownian
process and γt is the diffusion scale. The backward process then transforms pT into p0,
with drift function gk : Rd → Rd and same diffusion scales for the same values of t.

We consider the time interval [0, T ] divided into N sub-intervals ∆ti, for i ∈ {0, . . . , N−
1}. For the following derivation, we assume that we have samples {yi}Ni=0, obtained by
solving the backward SDE with an arbitrary solver and then reversing them time-wise (the
derivation is equivalent if we have samples from the forward SDE). The probability density
of these reversed solutions is then

p({yi}Ni=0) = p(y0)

N∏
i=1

p(yi|yi−1) . (2)

Taking inspiration from Hegde et al. (2021), we now introduce the shooting variables
{si}N−1

i=0 and {xi}Ni=1with transition probabilities p(xi|si−1) such that the probability den-
sity in Equation (2) becomes

p({yi}Ni=0) = p(y0)

N∏
i=1

∫
p(yi|xi)p(xi|si−1)p(si−1|yi−1) dxi dsi−1 . (3)

We now introduce the variational distribution q(si−1|yi−1) and the “variational” tran-
sition density q(xi|si−1), derived from the forward process, to obtain a lower bound on the

2



Shooting Schrödinger’s Cat

joint density, L ≤ log p({yi}Ni=0), as

L = log p(y0) +

N∑
i=1

{∫
q(xi|si−1)q(si−1|yi−1) log p(yi|xi)dxidsi−1

−
∫

q(si−1|yi−1)DKL[q(xi|si−1)∥p(xi|si−1)]dsi−1 −DKL[q(si−1|yi−1)∥p(si−1|yi−1)]

}
.

(4)

The diagram of the model is shown in Figure 1. The first and last terms inside the brackets
can be readily computed once the distributions p(yi|xi) and p(si−1|yi−1) are defined. How-
ever, the middle KL term, DKL[q(xi|si−1)∥p(xi|si−1)], requires knowledge of the transition
probabilities from the forward process, that might be very difficult (or even impossible) to
obtain in closed form for more elaborate solvers. To circumvent this, we replace the KL
divergence in this second term by the kernelized Stein discrepancy (KSD, Liu et al. (2016);
Chwialkowski et al. (2016)):

S(p, q) = Ex,x′∼p[δq,p(x)
⊤k(x, x′)δq,p(x

′)] (5)

where δq,p(x) = ∇ log q(x)−∇ log p(x), (with q and p arbitrary densities) and k(x, x′) is the
(twice differentiable) strictly positive kernel. It can be shown that there is an estimator for
the KSD that only requires the score function of one of the densities, which we can calculate
for the prior transition density of the shooting variables, since we define it as the transition
density of the reference process used in IPFP.

3. Experiments

In all of these experiments, the SDEs in our model were solved using the weak solver
proposed in Rößler (2009).

Figure 2: Learned dynamics, from Gaussian distribution to data set, with Brownian prior. Data
points are shown in black and final generated points in orange.

Brownian prior Firstly, we test whether our model is able to transform a Gaussian
distribution into several synthetic data sets and where the prior process is simple Brownian
motion. The results are presented in Figure 2.

Whirlpool prior We then verify that the model is able to learned dynamics that are
different from a Brownian motion. The first test consists of a “whirlpool” prior on the
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(a) Whirlpool prior (b) Double well prior

Figure 3: Dynamics under priors. (a) The standard Brownian motion (top) modified by the whirlpool
prior (bottom). (b) Double well prior dynamics applied (top-left); learned forwards dynamics with
DSB (top-right) and learned forwards dynamics with our model (bottom).

dynamics: the drift at any particular point is perpendicular to it. So, for a 2D vector {x, y}
the drift would be f(x, y) = {−7

2x,
7
2y}. The results are shown in Figure 3 (a).

Double well prior Following Vargas et al. (2021), we also test our model with a double
well potential prior, where the drift follows the negative gradient of the potential

U(x, y) =
5

2
(x2 − 1)2 + y2 + 3 exp

(
−3(x2 + y2)

)
. (6)

We compare our model with De Bortoli et al. (2021) (DSB) in Figure 3(b). While our
model is able to avoid the potential hill between the wells, DSB does not. We believe this
is because in the first iteration DSB prefers to match the prior paths (see top-left plot of
Figure 3(b)) at any cost, and the quickest way to do so is to go over the hill. Since in the
following IPFP iterations, DSB only tries to match the learned paths of the other direction,
it will never avoid it.

4. Conclusion

We have presented a model that is able to obtain solutions to the dynamic Schrödinger
Bridge Problem that is both solver-agnostic and maintains the regularization throughout
the training iterations, not just the first one. We have shown that it is able to learn
transformations from a Gaussian distribution to arbitrary data distributions, both using a
simple Brownian prior and a elaborate priors. Finally, we have shown that our model can
also be applied to potential priors.
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Bayesian inference of odes with gaussian processes. arXiv preprint arXiv:2106.10905,
2021.

S. Kullback. Probability densities with given marginals. The Annals of Mathematical
Statistics, 39(4):1236–1243, 1968.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-
of-fit tests. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 276–284, New York, New York, USA, 20–22 Jun 2016.
PMLR. URL https://proceedings.mlr.press/v48/liub16.html.

Andreas Rößler. Second order runge–kutta methods for itô stochastic differential equations.
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