11 research outputs found

    An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer

    Get PDF
    We report new experimental data on the composition of magmatic amphiboles synthesised from a variety of granite (sensu lato) bulk compositions at near-solidus temperatures and pressures of 0.8–10 kbar. The total aluminium content (Altot^\text{tot}) of the synthetic calcic amphiboles varies systematically with pressure (P\small \textit{P}), although the relationship is nonlinear at low pressures (<2.5 kbar). At higher pressures, the relationship resembles that of other experimental studies, which suggests of a general relationship between Altot^\text{tot} and P that is relatively insensitive to bulk composition. We have developed a new Al-in-hornblende geobarometer that is applicable to granitic rocks with the low-variance mineral assemblage: amphibole + plagioclase (An1580_{15–80}) + biotite + quartz + alkali feldspar + ilmenite/ titanite + magnetite + apatite. Amphibole analyses should be taken from the rims of grains, in contact with plagioclase and in apparent textural equilibrium with the rest of the mineral assemblage at temperatures close to the haplogranite solidus (725 ± 75 °C), as determined from amphibole–plagioclase thermometry. Mean amphibole rim compositions that meet these criteria can then be used to calculate P\small \textit{P} (in kbar) from Altot^\text{tot} (in atoms per formula unit, apfu) according to the expression: PP (kbar) = 0.5 + 0.331(8) × Altot^\text{tot} + 0.995(4) × (Altot^\text{tot})2^2 This expression recovers equilibration pressures of our calibrant dataset, comprising both new and published experimental and natural data, to within ±16 % relative uncertainty. An uncertainty of 10 % relative for a typical Altot^\text{tot} value of 1.5 apfu translates to an uncertainty in pressure estimate of 0.5 kbar, or 15 % relative. Thus the accuracy of the barometer expression is comparable to the precision with which near-solidus amphibole rim composition can be characterised.BHP Billiton, Royal Society (Wolfson Research Merit Award), California Institute of Technology (Moore Scholarship

    Mafic tiers and transient mushes: evidence from Iceland.

    Get PDF
    It is well established that magmatism is trans-crustal, with melt storage and processing occurring over a range of depths. Development of this conceptual model was based on observations of the products of magmatism at spreading ridges, including Iceland. Petrological barometry and tracking of the solidification process has been used to show that the Icelandic crust is built by crystallization over a range of depths. The available petrological evidence indicates that most of the active rift zones are not underlain by extensive and pervasive crystal mush. Instead, the microanalytical observations from Iceland are consistent with a model where magmatic processing in the lower crust occurs in sills of decimetric vertical thickness. This stacked sills mode of crustal accretion corresponds to that proposed for the oceanic crust on the basis of ophiolite studies. A key feature of these models is that the country rock for the sills is hot but subsolidus. This condition can be met if the porosity in thin crystal mushes at the margins of the sills is occluded by primitive phases, a contention that is consistent with observations from cumulate nodules in Icelandic basalts. The conditions required for the stabilization of trans-crustal mushes may not be present in magmatic systems at spreading ridges. This article is part of the Theo Murphy meeting issue 'Magma reservoir architecture and dynamics'

    Deep magma mobilization years before the 2021 CE Fagradalsfjall eruption, Iceland

    Get PDF
    Abstract The deep roots of volcanic systems play a key role in the priming, initiation, and duration of eruptions. Causative links between initial magmatic unrest at depth and eruption triggering remain poorly constrained. The 2021 CE eruption at Fagradalsfjall in southwestern Iceland, the first deep-sourced eruption on a spreading-ridge system monitored with modern instrumentation, presents an ideal opportunity for comparing geophysical and petrological data sets to explore processes of deep magma mobilization. We used diffusion chronometry to show that deep magmatic unrest in the roots of volcanic systems can precede apparent geophysical eruption precursors by years, suggesting that early phases of magma accumulation and reorganization can occur in the absence of significant increases in shallow seismicity (&amp;lt;7 km depth) or rapid geodetic changes. Closer correlation between geophysical and diffusion age records in the months and days prior to eruption signals the transition from a state of priming to full-scale mobilization in which magma begins to traverse the crust. Our findings provide new insights into the dynamics of near-Moho magma storage and mobilization. Monitoring approaches optimized to detect early phases of magmatic unrest in the lower crust, such as identification and location of deep seismicity, could improve our response to future eruptive crises.</jats:p
    corecore