39 research outputs found

    Towards 5G: scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure

    Get PDF
    Moving from 4G LTE to 5G is an archetypal example of technological change. Mobile Network Operators (MNOs) who fail to adapt will likely lose market share. Hitherto, qualitative frameworks have been put forward to aid with business model adaptation for MNOs facing on the one hand increasing traffic growth, while on the other declining revenues. In this analysis, we provide a complementary scenario-based assessment of 5G infrastructure strategies in relation to mobile traffic growth. Developing and applying an open-source modelling framework, we quantify the uncertainty associated with future demand and supply for a hypothetical MNO, using Britain as a case study example. We find that over 90% of baseline data growth between 2016 and 2030 is driven by technological change, rather than demographics. To meet this demand, spectrum strategies require the least amount of capital expenditure and can meet baseline growth until approximately 2025, after which new spectrum bands will be required. Alternatively, small cell deployments provide significant capacity but at considerable cost, and hence are likely only in the densest locations, unless MNOs can boost revenues by capturing value from the Internet of Things (IoT), Smart Cities or other technological developments dependent on digital connectivity.Edward Oughton, Zoraida Frias, Tom Russell and David Cleevely would like to express their gratitude to the UK Engineering and Physical Science Research Council for funding via grant EP/N017064/1: Multi-scale InfraSTRucture systems AnaLytics (Mistral). Zoraida Frias would like to thank the Universidad Politécnica de Madrid for their support through the mobility program scholarship

    Infrastructure as a Complex Adaptive System

    Get PDF
    National infrastructure systems spanning energy, transport, digital, waste, and water are well recognised as complex and interdependent. While some policy makers have been keen to adopt the narrative of complexity, the application of complexity-based methods in public policy decision-making has been restricted by the lack of innovation in associated methodologies and tools. In this paper we firstly evaluate the application of complex adaptive systems theory to infrastructure systems, comparing and contrasting this approach with traditional systems theory. We secondly identify five key theoretical properties of complex adaptive systems including adaptive agents, diverse agents, dynamics, irreversibility, and emergence, which are exhibited across three hierarchical levels ranging from agents, to networks, to systems. With these properties in mind, we then present a case study on the development of a system-of-systems modelling approach based on complex adaptive systems theory capable of modelling an emergent national infrastructure system, driven by agent-level decisions with explicitly modelled interdependencies between energy, transport, digital, waste, and water. Indeed, the novel contribution of the paper is the articulation of the case study describing a decade of research which applies complex adaptive systems properties to the development of a national infrastructure system-of-systems model. This approach has been used by the UK National Infrastructure Commission to produce a National Infrastructure Assessment which is capable of coordinating infrastructure policy across a historically fragmented governance landscape spanning eight government departments. The application will continue to be pertinent moving forward due to the continuing complexity of interdependent infrastructure systems, particularly the challenges of increased electrification and the proliferation of the Internet of Things.Peer Reviewe

    Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure

    Get PDF
    Extreme space weather due to coronal mass ejections has the potential to cause considerable disruption to the global economy by damaging the transformers required to operate electricity transmission infrastructure. However, expert opinion is split between the potential outcome being one of a temporary regional blackout and of a more prolonged event. The temporary blackout scenario proposed by some is expected to last the length of the disturbance, with normal operations resuming after a couple of days. On the other hand, others have predicted widespread equipment damage with blackout scenarios lasting months. In this paper we explore the potential costs associated with failure in the electricity transmission infrastructure in the U.S. due to extreme space weather, focusing on daily economic loss. This provides insight into the direct and indirect economic consequences of how an extreme space weather event may affect domestic production, as well as other nations, via supply chain linkages. By exploring the sensitivity of the blackout zone, we show that on average the direct economic cost incurred from disruption to electricity represents only 49% of the total potential macroeconomic cost. Therefore, if indirect supply chain costs are not considered when undertaking cost-benefit analysis of space weather forecasting and mitigation investment, the total potential macroeconomic cost is not correctly represented. The paper contributes to our understanding of the economic impact of space weather, as well as making a number of key methodological contributions relevant for future work. Further economic impact assessment of this threat must consider multiday, multiregional events.The authors acknowledge partial financial support from American International Group during the research and especially thank Brad Fischtrom, Siddhartha Dalal, and their team for providing useful comments and insights as the research progressed. We also thank attendees of the workshop held at the Cambridge Judge Business School in July 2015. Three anonymous reviewers are acknowledged for providing useful comments and feedback on the paper. Oughton was partially supported by the UK Engineering and Physical Science Research Council under grant EP/N017064/1: Multiscale InfraSTRucture systems AnaLytics. Horne and Thomson would like to acknowledge the support of the Natural Environment Research Council (NERC). This paper is published by permission of the Executive Director, British Geological Survey (NERC)

    The cost, coverage and rollout implications of 5G infrastructure in Britain

    No full text
    Despite 5G still being embryonic in its development, there is already a quest for evidence to support decision-making in government and industry. Although there is still considerable technological, economic and behavioural uncertainty, exploration of how the potential rollout may take place both spatially and temporally is required for effective policy formulation. Consequently, the cost, coverage and rollout implications of 5G networks across Britain are explored by extrapolating 4G LTE and LTE-Advanced characteristics for the period 2020-2030. We focus on ubiquitous ultrafast broadband of 50 Mbps and test the impact of annual capital intensity, infrastructure sharing and reducing the end-user speed in rural areas to either 10 or 30 Mbps. For the business-as-usual scenario we find that 90% of the population is covered with 5G by 2027, but coverage is unlikely to reach the final 10% due to exponentially increasing costs. Moreover, varying annual capital intensity or deploying a shared small cell network can greatly influence the time taken to reach the 90% threshold, with these changes mostly benefiting rural areas. Importantly, simply by integrating new and existing spectrum, a network capable of achieving 10 Mbps per rural user is possible, which is comparable to the UK's current fixed broadband Universal Service Obligation. We contribute to the literature by quantifying the effectiveness of the spatial and temporal rollout of 5G under different policy options.This work was supported by the UK Engineering and Physical Science Research Council programme grant entitled Multi-scale InfraSTRucture systems AnaLytics (EP/N017064/1). Modest funding was provided by the National Infrastructure Commission for the production of the original report to cover travel and writing costs

    The importance of spatio-temporal infrastructure assessment: Evidence for 5G from the Oxford–Cambridge Arc

    No full text
    The roll-out of 5G infrastructure can provide enhanced high capacity, low latency communications enabling a range of new use cases. However, to deliver the improvements 5G promises, we need to understand how to enhance capacity and coverage, at reasonable cost, across space and over time. In this paper, we take a spatio-temporal simulation modeling approach, using industry-standard engineering models of 5G wireless networks, to test how different infrastructure strategies perform under scenarios of uncertain future demand. We use coupled open-source models to analyze a UK growth corridor, a system-of-cities comprising 7 urban areas, known as the Oxford-Cambridge Arc. We find that population growth has a marginal impact on total demand for 5G (up to 15%), as the main factor driving demand is the increase in per user data consumption resulting mainly from video. Additionally, the results suggest only limited justification for deploying 5G based purely on the need for more capacity. Strategies which reuse existing brownfield Macro Cell sites are enough to meet future demand for Enhanced Mobile Broadband, except in the densest urban areas. While spatio-temporal analysis of infrastructure is common in some sectors (e.g. transport, energy and water), there has been a lack of open analysis of digital infrastructure. This study makes a novel contribution by providing an open and reproducible spatio-temporal assessment of different 5G technologies at a time when 5G is starting to roll-out around the world

    Digital communications and information systems

    No full text

    Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure

    No full text
    Extreme space weather due to coronal mass ejections has the potential to cause considerable disruption to the global economy by damaging the transformers required to operate electricity transmission infrastructure. However, expert opinion is split between the potential outcome being one of a temporary regional blackout and of a more prolonged event. The temporary blackout scenario proposed by some is expected to last the length of the disturbance, with normal operations resuming after a couple of days. On the other hand, others have predicted widespread equipment damage with blackout scenarios lasting months. In this paper we explore the potential costs associated with failure in the electricity transmission infrastructure in the U.S. due to extreme space weather, focusing on daily economic loss. This provides insight into the direct and indirect economic consequences of how an extreme space weather event may affect domestic production, as well as other nations, via supply chain linkages. By exploring the sensitivity of the blackout zone, we show that on average the direct economic cost incurred from disruption to electricity represents only 49% of the total potential macroeconomic cost. Therefore, if indirect supply chain costs are not considered when undertaking cost-benefit analysis of space weather forecasting and mitigation investment, the total potential macroeconomic cost is not correctly represented. The paper contributes to our understanding of the economic impact of space weather, as well as making a number of key methodological contributions relevant for future work. Further economic impact assessment of this threat must consider multiday, multiregional events

    Strategic analysis of the future of national infrastructure

    No full text
    © 2016, ICE Publishing. All rights reserved.There have been many calls for a more strategic, long-term approach to national infrastructure in the UK and elsewhere around the world. While appealing in principle, developing a national infrastructure strategy in practice poses major challenges of complexity and uncertainty. The UK Infrastructure Transitions Research Consortium has set out a systematic methodology for long-term analysis of the performance of national infrastructure systems. It deals with each infrastructure sector – energy, transport, digital communications, water supply, waste water, flood protection and solid waste – in a consistent framework and assesses the interdependencies between sectors. The method is supported with the world’s first infrastructure ‘system-of-systems’ model, which has been developed for long-term decision analysis in interdependent infrastructure systems. This paper presents the Nismod model’s analysis in the National Needs Assessment report launched at the Institution of Civil Engineers in October 2016
    corecore