65 research outputs found

    Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders

    Get PDF
    Small intestinal bacterial overgrowth (SIBO) has been implicated in symptoms associated with functional gastrointestinal disorders (FGIDs), though mechanisms remain poorly defined and treatment involves non-specific antibiotics. Here we show that SIBO based on duodenal aspirate culture reflects an overgrowth of anaerobes, does not correspond with patient symptoms, and may be a result of dietary preferences. Small intestinal microbial composition, on the other hand, is significantly altered in symptomatic patients and does not correspond with aspirate culture results. In a pilot interventional study we found that switching from a high fiber diet to a low fiber, high simple sugar diet triggered FGID-related symptoms and decreased small intestinal microbial diversity while increasing small intestinal permeability. Our findings demonstrate that characterizing small intestinal microbiomes in patients with gastrointestinal symptoms may allow a more targeted antibacterial or a diet-based approach to treatment

    Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota

    Get PDF
    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates

    Morphology of Chickpea Seeds ('Cicer arietinum' L.): Comparison of desi and kabuli types

    No full text
    The morphology and composition of seeds of desi and kabuli chickpea ('Cicer arietinum' L.) genotypes were studied using light microscopy with differential staining for protein, starch, β-glucans, and nonfluorescing compounds. Kabuli seeds had a thinner seedcoat due to thinner palisade and parenchyma layers which contained fewer pectic polysaccharides and less protein. The outer palisade layer varied in thickness from one to two cells, leading to a textured and sometimes wrinkled appearance of the seed surface. In contrast, the desi palisade layers were rigid and extensively thickened. Hourglass cells were homogeneous for both seed types, but not in an interspecific desi line (containing 'Cicer echinospermum' parentage), which had heterogeneous cells. The inner surface of the seedcoat contained both pectic and proteinaceous materials. The cotyledon comprised a single outer epidermal layer of protein-filled cells devoid of starch, with thickened outer cell walls; cell size and shape differed on abaxial and adaxial faces. Subepidermal cells on the abaxial face were similar to epidermal cells. These findings help explain differences in the processing behavior between the major chickpea seed types

    Eosinophil function in adipose tissue is regulated by Kruppel-like factor 3 (KLF3)

    Get PDF
    The conversion of white adipocytes to thermogenic beige adipocytes represents a potential mechanism to treat obesity and related metabolic disorders. However, the mechanisms involved in converting white to beige adipose tissue remain incompletely understood. Here we show profound beiging in a genetic mouse model lacking the transcriptional repressor Krüppel-like factor 3 (KLF3). Bone marrow transplants from these animals confer the beige phenotype on wild type recipients. Analysis of the cellular and molecular changes reveal an accumulation of eosinophils in adipose tissue. We examine the transcriptomic profile of adipose-resident eosinophils and posit that KLF3 regulates adipose tissue function via transcriptional control of secreted molecules linked to beiging. Furthermore, we provide evidence that eosinophils may directly act on adipocytes to drive beiging and highlight the critical role of these little-understood immune cells in thermogenesis
    corecore