1,131 research outputs found

    Foot-operated cell-counter

    Get PDF
    Cell-counter for cell indices consists of a footboard with four pressure sensitive switches and an enclosure for the components and circuitry. This device increases the operators efficiency by reducing the number of required hand movements

    Detecting many-body entanglements in noninteracting ultracold atomic fermi gases

    Full text link
    We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) momentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations responsible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole correlations responsible for entanglement entropy. The signature of these momentum correlations might be detected by a sensitive TOF type experiment.Comment: 5 pages, 5 figures, fixed axes labels on figs. 3 and 5, added reference

    Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States

    Full text link
    We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent and thermal quantities in quantum systems. For time-dependent systems, we modify a previous mapping to quantum circuits to significantly reduce the computer resources required. This modification is based on a principle of "observing" the system outside the light-cone. We apply this method to study spin relaxation in systems started out of equilibrium with initial conditions that give rise to very rapid entanglement growth. We also show that it is possible to approximate time evolution under a local Hamiltonian by a quantum circuit whose light-cone naturally matches the Lieb-Robinson velocity. Asymptotically, these modified methods allow a doubling of the system size that one can obtain compared to direct simulation. We then consider a different problem of thermal properties of disordered spin chains and use quantum belief propagation to average over different configurations. We test this algorithm on one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds, where we can compare to quantum Monte Carlo, and then we apply it to the study of disordered, frustrated spin systems.Comment: 19 pages, 12 figure

    Liquidity and the multiscaling properties of the volume traded on the stock market

    Get PDF
    We investigate the correlation properties of transaction data from the New York Stock Exchange. The trading activity f(t) of each stock displays a crossover from weaker to stronger correlations at time scales 60-390 minutes. In both regimes, the Hurst exponent H depends logarithmically on the liquidity of the stock, measured by the mean traded value per minute. All multiscaling exponents tau(q) display a similar liquidity dependence, which clearly indicates the lack of a universal form assumed by other studies. The origin of this behavior is both the long memory in the frequency and the size of consecutive transactions.Comment: 7 pages, 3 figures, submitted to Europhysics Letter

    Time Evolution within a Comoving Window: Scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains

    Full text link
    We present a modification of Matrix Product State time evolution to simulate the propagation of signal fronts on infinite one-dimensional systems. We restrict the calculation to a window moving along with a signal, which by the Lieb-Robinson bound is contained within a light cone. Signal fronts can be studied unperturbed and with high precision for much longer times than on finite systems. Entanglement inside the window is naturally small, greatly lowering computational effort. We investigate the time evolution of the transverse field Ising (TFI) model and of the S=1/2 XXZ antiferromagnet in their symmetry broken phases after several different local quantum quenches. In both models, we observe distinct magnetization plateaus at the signal front for very large times, resembling those previously observed for the particle density of tight binding (TB) fermions. We show that the normalized difference to the magnetization of the ground state exhibits similar scaling behaviour as the density of TB fermions. In the XXZ model there is an additional internal structure of the signal front due to pairing, and wider plateaus with tight binding scaling exponents for the normalized excess magnetization. We also observe parameter dependent interaction effects between individual plateaus, resulting in a slight spatial compression of the plateau widths. In the TFI model, we additionally find that for an initial Jordan-Wigner domain wall state, the complete time evolution of the normalized excess longitudinal magnetization agrees exactly with the particle density of TB fermions.Comment: 10 pages with 5 figures. Appendix with 23 pages, 13 figures and 4 tables. Largely extended and improved versio

    Quantum Quench from a Thermal Initial State

    Full text link
    We consider a quantum quench in a system of free bosons, starting from a thermal initial state. As in the case where the system is initially in the ground state, any finite subsystem eventually reaches a stationary thermal state with a momentum-dependent effective temperature. We find that this can, in some cases, even be lower than the initial temperature. We also study lattice effects and discuss more general types of quenches.Comment: 6 pages, 2 figures; short published version, added references, minor change

    Entanglement entropy and quantum phase transitions in quantum dots coupled to Luttinger liquid wires

    Full text link
    We study a quantum phase transition which occurs in a system composed of two impurities (or quantum dots) each coupled to a different interacting (Luttinger-liquid) lead. While the impurities are coupled electrostatically, there is no tunneling between them. Using a mapping of this system onto a Kondo model, we show analytically that the system undergoes a Berezinskii-Kosterlitz-Thouless quantum phase transition as function of the Luttinger liquid parameter in the leads and the dot-lead interaction. The phase with low values of the Luttinger-liquid parameter is characterized by an abrupt switch of the population between the impurities as function of a common applied gate voltage. However, this behavior is hard to verify numerically since one would have to study extremely long systems. Interestingly though, at the transition the entanglement entropy drops from a finite value of ln(2)\ln(2) to zero. The drop becomes sharp for infinite systems. One can employ finite size scaling to extrapolate the transition point and the behavior in its vicinity from the behavior of the entanglement entropy in moderate size samples. We employ the density matrix renormalization group numerical procedure to calculate the entanglement entropy of systems with lead lengths of up to 480 sites. Using finite size scaling we extract the transition value and show it to be in good agreement with the analytical prediction.Comment: 12 pages, 9 figure

    Time evolution of 1D gapless models from a domain-wall initial state: SLE continued?

    Full text link
    We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain-wall. We generalize the path-integral imaginary time approach that together with boundary conformal field theory allows to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic \kappa for boundary conditions corresponding to SLE. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state.Comment: 27 pages, 10 figure

    A minimal model for congestion phenomena on complex networks

    Full text link
    We study a minimal model of traffic flows in complex networks, simple enough to get analytical results, but with a very rich phenomenology, presenting continuous, discontinuous as well as hybrid phase transitions between a free-flow phase and a congested phase, critical points and different scaling behaviors in the system size. It consists of random walkers on a queueing network with one-range repulsion, where particles can be destroyed only if they can move. We focus on the dependence on the topology as well as on the level of traffic control. We are able to obtain transition curves and phase diagrams at analytical level for the ensemble of uncorrelated networks and numerically for single instances. We find that traffic control improves global performance, enlarging the free-flow region in parameter space only in heterogeneous networks. Traffic control introduces non-linear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner. The model also reproduces the cross-over in the scaling of traffic fluctuations empirically observed in the Internet, and moreover, a conserved version can reproduce qualitatively some stylized facts of traffic in transportation networks

    Comprehensive Analysis of Market Conditions in the Foreign Exchange Market: Fluctuation Scaling and Variance-Covariance Matrix

    Get PDF
    We investigate quotation and transaction activities in the foreign exchange market for every week during the period of June 2007 to December 2010. A scaling relationship between the mean values of number of quotations (or number of transactions) for various currency pairs and the corresponding standard deviations holds for a majority of the weeks. However, the scaling breaks in some time intervals, which is related to the emergence of market shocks. There is a monotonous relationship between values of scaling indices and global averages of currency pair cross-correlations when both quantities are observed for various window lengths Δt\Delta t.Comment: 13 pages, 10 figure
    corecore