32 research outputs found

    Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular 'heads' of C1q

    Get PDF
    This work describes the functional characterization, cDNA cloning, and expression of a novel cell surface protein. This protein designated gC1q-R, was first isolated from Raji cells and was found to bind to the globular 'heads' of C1q molecules, at physiological ionic strength, and also to inhibit complement-mediated lysis of sheep erythrocytes by human serum. The NH 2-terminal amino acid sequence of the first 24 residues of the C1q- binding protein was determined and this information allowed the synthesis of two degenerate polymerase chain reaction primers for use in the preparation of a probe in the screening of a B cell cDNA library. The cDNA isolated, using this probe, was found to encode a pre-pro protein of 282 residues. The NH 2 terminus of the protein isolated from Raji cells started at residue 74 of the predicted pre-pro sequence. The cDNA sequence shows that the purified protein has three potential N-glycosylation residues and is a highly charged, acidic molecule. Hence, its binding to C1q may be primarily but not exclusively due to ionic interactions. The 'mature' protein, corresponding to amino acid residues 74-282 of the predicted pre-pro sequence, was overexpressed in Escherichia coli and was purified to homogeneity. This recombinant protein was also able to inhibit the complement-mediated lysis of sheep erythrocytes by human serum and was shown to be a tetramer by gel filtration in nondissociating conditions. Northern blot and RT-PCR studies showed that the C1q-binding protein is expressed at high levels in Raji and Daudi cell lines, at moderate levels in U937, Molt-4, and HepG2 cell lines, and at a very low level in the HL60 cell line. However, it is not expressed in the K562 cell line. Comparison of gC1q-R NH 2-terminal sequence with that of the receptor for the collagen-like domain of C1q (cC1q-R) showed no similarity. Furthermore, antibodies to gC1q-R or an 18-amino acid residue- long NH 2-terminal synthetic gC1q-R peptide did not cross-react with antibodies to cC1q-R. Anti-gC1q-R immunoblotted a 33-kD Raji cell membrane protein, whereas anti cC1q-R recognized a molecule of ~60 kD. The NH 2- terminal sequence of gC1g-R appears to be displayed extracellularly since anti-gC1g-R peptide reacted with surface molecules on lymphocytes, polymorphonuclear leukocytes, and platelets, as assessed by flow cytometric and confocal laser scanning microscopic analyses. In addition, all or part of the gC1q binding domain may reside within the 24 amino acid stretch of the NH 2-terminal sequence of gC1q-R since the 18 amino acid residue long- synthetic peptide corresponding to this region inhibited serum C1q hemolytic activity. The data presented in this report suggest that there are at least two types of C1q-R which appear to be expressed on the same type of cells and these receptors individually or in concert may contribute to the diversity of C1q-mediated responses.published_or_final_versio

    Is the a-chain the engine that drives the diversity of C1q functions? Revisiting its unique structure

    Get PDF
    The immunopathological functions associated with human C1q are still growing in terms of novelty, diversity, and pathologic relevance. It is, therefore, not surprising that C1q is being recognized as an important molecular bridge between innate and adaptive immunity. The secret of this functional diversity, in turn, resides in the elegant but complex structure of the C1q molecule, which is assembled from three distinct gene products: A, B, and C, each of which has evolved from a separate and unique ancestral gene template. The C1q molecule is made up of 6A, 6B, and 6C polypeptide chains, which are held together through strong covalent and non-covalent bonds to form the 18-chain, bouquet-of-flower-like protein that we know today. The assembled C1q protein displays at least two distinct structural and functional regions: the collagen-like region (cC1q) and the globular head region (gC1q), each being capable of driving a diverse range of ligand- or receptor-mediated biological functions. What is most intriguing, however, is the observation that most of the functions appear to be predominantly driven by the A-chain of the molecule, which begs the question: what are the evolutionary modifications or rearrangements that singularly shaped the primordial A-chain gene to become a pluripotent and versatile component of the intact C1q molecule? Here, we revisit and discuss some of the known unique structural and functional features of the A-chain, which may have contributed to its versatility

    The human gC1qR/p32 gene, C1qBP. Genomic organization and promoter analysis

    Get PDF
    gC1qR is an ubiquitously expressed cell protein that interacts with the globular heads of C1q (gC1q) and many other ligands. In this study, the 7.8-kilobase pair (kb) human gC1qPJp32 (C1qBP) gene was cloned and found to consist of 6 exons and 5 introns. Analysis of a 1.3-kb DNA fragment at the 5′-flanking region of this gene revealed the presence of multiple TATA, CCAAT, and Sp1 binding sites. Luciferase reporter assays performed in different human cell lines demonstrated that the reporter gene was ubiquitously driven by this 1.3-kb fragment. Subsequent 5′ and 3′ deletion of this fragment confined promoter elements to within 400 base pairs (bp) upstream of the translational start site. Because the removal of the 8-bp consensus TATATATA at -399 to -406 and CCAAT at -410 to -414 did not significantly affect the transcription efficiency of the promoter, GC-rich sequences between this TATA box and the translation start site may be very important for the promoter activity of the C1qBP gene. One of seven GC-rich sequences in this region binds specifically to PANC-1 nuclear extracts, and the transcription factor Sp1 was shown to bind to this GC-rich sequence by the supershift assay. Primer extension analysis mapped three major transcription start regions. The farthest transcription start site is 49 bp upstream of the ATG translation initiation codon and is in close proximity of the specific SP1 binding site.postprin

    Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells

    Get PDF
    Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1β. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174-180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37°C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174-180 and 154-162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R

    Serum complement activation on heterologous platelets is associated with arterial thrombosis in patients with systemic lupus erythematosus and antiphospholipid antibodies

    Get PDF
    Complement plays a major role in inflammation and thrombosis associated with systemic lupus erythematosus (SLE) and the antiphospholipid syndrome (APS). A cross-sectional retrospective analysis was performed to evaluate serum complement fixation on platelets and thrombotic incidence using banked sera and clinical data from patients with SLE (n = 91), SLE with antiphospholipid antibodies (aPL) or APS (n = 78) and primary aPL (n = 57) or APS (n = 96). In-situ complement fixation was measured as C1q and C4d deposition on heterologous platelets using an enzyme-linked immunosorbent assay approach. Platelet activation by patient serum in the fluid phase was assessed via serotonin release assay. Enhanced in-situ complement fixation was associated with the presence of IgG aPL and IgG anti-β2 glycoprotein 1 antibodies (P < 0.05) and increased platelet activation (P < 0.005). Moreover, enhanced complement fixation, especially C4d deposition on heterologous platelets, was positively associated with arterial thrombotic events in patients with SLE and aPL (P = 0.039). Sera from patients with aPL possess an enhanced capacity for in-situ complement fixation on platelets. This capacity may influence arterial thrombosis risk in patients with SLE

    Effect of tube diameter and capillary number on platelet margination and near-wall dynamics

    Get PDF
    The effect of tube diameter DD and capillary number CaCa on platelet margination in blood flow at 37%\approx 37\% tube haematocrit is investigated. The system is modelled as three-dimensional suspension of deformable red blood cells and nearly rigid platelets using a combination of the lattice-Boltzmann, immersed boundary and finite element methods. Results show that margination is facilitated by a non-diffusive radial platelet transport. This effect is important near the edge of the cell-free layer, but it is only observed for Ca>0.2Ca > 0.2, when red blood cells are tank-treading rather than tumbling. It is also shown that platelet trapping in the cell-free layer is reversible for Ca0.2Ca \leq 0.2. Only for the smallest investigated tube (D=10μmD = 10 \mu\text{m}) margination is essentially independent of CaCa. Once platelets have reached the cell-free layer, they tend to slide rather than tumble. The tumbling rate is essentially independent of CaCa but increases with DD. Tumbling is suppressed by the strong confinement due to the relatively small cell-free layer thickness at 37%\approx 37\% tube haematocrit.Comment: 16 pages, 10 figure

    Localization of A gC1q-R recognition site in the A-chain of C1q.

    No full text

    gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection

    No full text
    Human gC1q-R (p33, p32, C1qBP, TAP) is a ubiquitously expressed, multiligand-binding, multicompartmental cellular protein involved in various ligand-mediated cellular responses. Although expressed on the surface of cells, an intriguing feature of the membrane-associated form of gC1q-R is that its translated amino acid sequence does not predict the presence of either a sequence motif compatible with a transmembrane segment or a consensus site for a glycosylphosphatidylinositol anchor. Moreover, the N-terminal sequence of the pre-pro-protein of gC1q-R contains a motif that targets the molecule to the mitochondria and as such was deemed unlikely to be expressed on the surface. However, several lines of experimental evidence dearly show that gC1q-R is present in all compartments of the cell, including the extracellular cell surface. First, surface labeling of B lymphocytes with the membrane-impermeable reagent sulfosuccinimidyl 6-(biotinamido)hexanoate shows specific biotin incorporation into the surface-expressed but not the intracellular form of gC1q-R. Second, FACS and confocal laser scanning microscopic analyses using anti-gC1q-R IgG mAb 60.11 or 74.5.2, and the fluorophore Alexa 488-conjugated F(ab′) 2 goat anti-mouse IgG as a probe, demonstrated specific staining of Raji cells (>95% viable). Three-dimensional analyses of the same cells by confocal microscopy showed staining distribution that was consistent with surface expression. Third, endothelial gC1q-R, which is associated with the urokinase plasminogen activator receptor, and cytokeratin 1 bind 125I-high molecular weight kininogen in a specific manner, and the binding is inhibited dose-dependently by mAb 74.5.2 recognizing gC1q-R residues 204-218. Fourth, native gC1q-R purified from Raji cell membranes but not intracellular gC1q-R is glycosylated, as evidenced by a positive periodic acid Schiff stain as well as sensitivity to digestion with endoglycosidase H and F. Finally, cross-linking experiments using C1q as a ligand indicate that both cC1q-R and gC1q-R are co-immunoprecipitated with anti-C1q. Taken together, the evidence accumulated to date supports the concept that in addition to its intracellular localization, gC1q-R is expressed on the cell surface and can serve as a binding site for plasma and microbial proteins, but also challenges the existing paradigm that mitochondrial proteins never leave their designated compartment. It is therefore proposed that gC1q-R belongs to a growing list of a class of proteins initially targeted to the mitochondria but then exported to different compartments of the cell through specific mechanisms which have yet to be identified. The designation 'multifunctional and multicompartmental cellular proteins' is proposed for this class of proteins.link_to_subscribed_fulltex

    The binding protein for globular heads of complement C1q, gC1qR: Functional expression and characterization as a novel vitronectin binding factor

    No full text
    A binding protein for the globular head domains of complement component C1q, designated gC1qR, recently described to be present on vascular and blood cells (Ghebrehiwet, B., Lim, B.-L., Peerschke, E. I. B., Willis, A. C., and Reid, K. B. M. (1994) J. Exp. Med. 179, 1809-1821 was expressed in recombinant form in bacteria to investigate its functional and structural properties. The recombinant gC1qR was found to be functional because tetramerization of the 24.3-kDa polypeptide occurred as described for the native protein, and the binding of the ligand C1q by recombinant gC1qR was indistinguishable from binding shown by gC1qR isolated from Raji cells. Recombinant gC1qR immobilized to microspheres was used to search for additional binding proteins unrelated to C1q. Surprisingly, it was found that vitronectin or complexes containing vitronectin were retained from plasma or serum, and subsequent analysis revealed the specific binding of the ternary vitronectin-thrombin-antithrombin complex to gC1qR. Because the thrombin- antithrombin complex was unable to interact with gC1qR, direct binding with vitronectin was investigated in a purified system. The heparin binding multimeric form of vitronectin but not the plasma form of vitronectin was found to bind specifically to gC1qR isolated from Raji cell membrane as well as to recombinant gC1qR. This interaction was saturable (K(D) -20 nM) and inhibitable by glycosaminoglycans such as heparin but not by chondroitin sulfate. C1q and vitronectin did not compete with each other for binding to gC1qR, and both ligands seem to interact with different parts of the gC1qR because a truncated version of recombinant gC1qR lacking the N-terminal 22- amino acid portion hardly interacted with vitronectin but bound C1q as well as the intact gC1qR. These findings establish gC1qR as a novel vitronectin- binding protein that may participate in the clearance of vitronectin- containing complexes or opsonized particles or cooperate with vitronectin in the inhibition of complement-mediated cytolysis.published_or_final_versio
    corecore