6 research outputs found

    Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives

    Get PDF
    To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue

    Current Application of Micro/Nano-Interfaces to Stimulate and Analyze Cellular Responses

    No full text
    Microfabrication technologies have a high potential for novel approaches to access living cells at a cellular or even at a molecular level. In the course of reviewing and discussing the current application of microinterface systems including nanointerfaces to stimulate and analyze cellular responses with subcellular resolution, this article focuses on interfaces based on microfluidics, nanoparticles, and scanning electrochemical microscopy (SECM). Micro/nanointerface systems provide a novel, attractive means for cell study because they are capable of regulating and monitoring cellular signals simultaneously and repeatedly, leading us to an enhanced understanding and interpretation of cellular responses. Therefore, it is hoped that the integrated micro/nanointerfaces presented in this review will contribute to future developments of cell biology and facilitate advanced biomedical applications.close2

    Nanocrystals and Nanoparticles Versus Molecular Fluorescent Labels as Reporters for Bioanalysis and the Life Sciences: A Critical Comparison

    No full text
    corecore