28 research outputs found
Association Rate Constants of Ras-Effector Interactions Are Evolutionarily Conserved
Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks
Cerebrovascular mental stress reactivity is impaired in hypertension
<p>Abstract</p> <p>Background</p> <p>Brachial artery reactivity in response to shear stress is altered in subjects with hypertension. Since endothelial dysfunction is generalized, we hypothesized that carotid artery (CA) reactivity would also be altered in hypertension.</p> <p>Purpose</p> <p>To compare (CA endothelium-dependent vasodilation in response to mental stress in normal and hypertensive subjects.</p> <p>Methods</p> <p>We evaluated CA reactivity to mental stress in 10 young healthy human volunteers (aged 23 ± 4 years), 20 older healthy volunteers (aged 49 ± 11 years) and in 28 patients with essential hypertension (aged 51 ± 13 years). In 10 healthy volunteers and 12 hypertensive subjects, middle cerebral artery (MCA) PW transcranial Doppler was performed before and 3 minutes after mental stress.</p> <p>Results</p> <p>Mental stress by Stroop color word conflict, math or anger recall tests caused CA vasodilation in young healthy subjects (0.61 ± 0.06 to 0.65 ± 0.07 cm, p < 0.05) and in older healthy subjects (0.63 ± 0.06 to 0.66 ± 0.07 cm, p < 0.05), whereas no CA vasodilation occurred in hypertensive subjects (0.69 ± 0.06 to 0.68 ± 0.07 cm; p, NS). CA blood flow in response to mental stress increased in young healthy subjects (419 ± 134 to 541 ± 209 ml, p < 0.01 vs. baseline) and in older healthy subjects (351 ± 114 to 454 ± 136 ml, p < 0.01 vs. baseline) whereas no change in blood flow (444 ± 143 vs. 458 ± 195 ml; p, 0.59) occurred in hypertensive subjects. There was no difference in the CA response to nitroglycerin in healthy and hypertensive subjects. Mental stress caused a significant increase in baseline to peak MCA systolic (84 ± 22 to 95 ± 22 cm/s, p < 0.05), diastolic (42 ± 12 to 49 ± 14 cm/s, p < 0.05) as well as mean (30 ± 13 to 39 ± 13 cm/s, p < 0.05) PW Doppler velocities in normal subjects, whereas no change in systolic (70 ± 18 to 73 ± 22 cm/s, p < 0.05), diastolic (34 ± 14 to 37 ± 14 cm/s, p = ns) or mean velocities (25 ± 9 to 26 ± 9 cm/s, p = ns) occurred in hypertensive subjects, despite a similar increase in heart rate and blood pressure in response to mental stress in both groups.</p> <p>Conclusion</p> <p>Mental stress produces CA vasodilation and is accompanied by an increase in CA and MCA blood flow in healthy subjects. This mental stress induced CA vasodilation and flow reserve is attenuated in subjects with hypertension and may reflect cerebral vascular endothelial dysfunction. Assessment of mental stress induced CA reactivity by ultrasound is a novel method for assessing the impact of hypertension on cerebrovascular endothelial function and blood flow reserve.</p
Array-CGH and breast cancer
The introduction of comparative genomic hybridization (CGH) in 1992 opened new avenues in genomic investigation; in particular, it advanced analysis of solid tumours, including breast cancer, because it obviated the need to culture cells before their chromosomes could be analyzed. The current generation of CGH analysis uses ordered arrays of genomic DNA sequences and is therefore referred to as array-CGH or matrix-CGH. It was introduced in 1998, and further increased the potential of CGH to provide insight into the fundamental processes of chromosomal instability and cancer. This review provides a critical evaluation of the data published on array-CGH and breast cancer, and discusses some of its expected future value and developments