492 research outputs found

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Top-up operation at Pohang Light Source-II

    Get PDF
    After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac were the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan. (C) 2014 AIP Publishing LLC.open111011sciescopu

    Reviewing progress: 7 Year Trends in Characteristics of Adults and Children Enrolled at HIV Care and Treatment Clinics in the United Republic of Tanzania.

    Get PDF
    To evaluate the on-going scale-up of HIV programs, we assessed trends in patient characteristics at enrolment and ART initiation over 7 years of implementation. Data were from Optimal Models, a prospective open cohort study of HIV-infected (HIV+) adults (>=15 years) and children (<15 years) enrolled from January 2005 to December 2011 at 44 HIV clinics in 3 regions of mainland Tanzania (Kagera, Kigoma, Pwani) and Zanzibar. Comparative statistics for trends in characteristics of patients enrolled in 2005--2007, 2008--2009 and 2010--2011 were examined. Overall 62,801 HIV+ patients were enrolled: 58,102(92.5%) adults, (66.5% female); 4,699(7.5%) children.Among adults, pregnant women enrolment increased: 6.8%, 2005--2007; 12.1%, 2008--2009; 17.2%, 2010--2011; as did entry into care from prevention of mother-to-child HIV transmission (PMTCT) programs: 6.6%, 2005--2007; 9.5%, 2008--2009; 12.6%, 2010--2011. WHO stage IV at enrolment declined: 27.1%, 2005--2007; 20.2%, 2008--2009; 11.1% 2010--2011. Of the 42.5% and 29.5% with CD4+ data at enrolment and ART initiation respectively, median CD4+ count increased: 210cells/muL, 2005--2007; 262cells/muL, 2008--2009; 266cells/muL 2010--2011; but median CD4+ at ART initiation did not change (148cells/muL overall). Stavudine initiation declined: 84.9%, 2005--2007; 43.1%, 2008--2009; 19.7%, 2010--2011.Among children, median age (years) at enrolment decreased from 6.1(IQR:2.7-10.0) in 2005--2007 to 4.8(IQR:1.9-8.6) in 2008--2009, and 4.1(IQR:1.5-8.1) in 2010--2011 and children <24 months increased from 18.5% to 26.1% and 31.5% respectively. Entry from PMTCT was 7.0%, 2005--2007; 10.7%, 2008--2009; 15.0%, 2010--2011. WHO stage IV at enrolment declined from 22.9%, 2005--2007, to 18.3%, 2008--2009 to 13.9%, 2010--2011. Proportion initiating stavudine was 39.8% 2005--2007; 39.5%, 2008--2009; 26.1%, 2010--2011. Median age at ART initiation also declined significantly. Over time, the proportion of pregnant women and of adults and children enrolled from PMTCT programs increased. There was a decline in adults and children with advanced HIV disease at enrolment and initiation of stavudine. Pediatric age at enrolment and ART initiation declined. Results suggest HIV program maturation from an emergency response

    Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice

    Get PDF
    Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA

    Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

    Full text link
    Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometries where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry

    Bose-Einstein Condensation of Excitons in Bilayer Electron Systems

    Get PDF
    An ordered state of electrons in solids in which excitons condense was proposed many years ago as a theoretical possibility but has, until recently, never been observed. We review recent studies of semiconductor bilayer systems that provide clear evidence for this phenomenon and explain why exciton condensation in the quantum Hall regime, where these experiments were performed, is as likely to occur in electron-electron bilayers as in electron-hole bilayers. In current quantum Hall exciton condensates, disorder induces mobile vortices that flow in response to a supercurrent and limit the extremely large bilayer counterflow conductivity.Comment: 19 pages including 4 figure

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Analgesic management of an eight-year-old Springer Spaniel after amputation of a thoracic limb

    Get PDF
    Analgesic agents were administered perioperatively to an eight-year-old Springer Spaniel undergoing amputation of its right thoracic limb. The amputation was carried out due to a painful, infiltrative and poorly differentiated sarcoma involving the nerves of the brachial plexus. A combination of pre-emptive and multimodal perioperative analgesic strategies was used; including intravenous (IV) infusions of fentanyl, morphine, lidocaine and ketamine

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    corecore