17 research outputs found

    Let me take the wheel: Illusory control and sense of agency

    Get PDF
    Illusory control refers to an effect in games of chance where features associated with skilful situations increase expectancies of success. Past work has operationalized illusory control in terms of subjective ratings or behaviour, with limited consideration of the relationship between these definitions, or the broader construct of agency. This study used a novel card-guessing task in 78 participants to investigate the relationship between subjective and behavioural illusory control. We compared trials in which participants (a) had no opportunity to exercise illusory control, (b) could exercise illusory control for free, or (c) could pay to exercise illusory control. Contingency Judgment and Intentional Binding tasks assessed explicit and implicit sense of agency, respectively. On the card-guessing task, confidence was higher when participants exerted control than in the baseline condition. In a complementary model, participants were more likely to exercise control when their confidence was high, and this effect was accentuated in the pay condition relative to the free condition. Decisions to pay were positively correlated with control ratings on the Contingency Judgment task, but were not significantly related to Intentional Binding. These results establish an association between subjective and behavioural illusory control and locate the construct within the cognitive literature on agency.J.T.W. is funded by a Cambridge Australia Poynton Scholarship. L.C., E.L.O. and M.R.F.A. were funded by a Medical Research Council [grant number G1100554/1]. C.M.G. is funded by a Sir Henry Welcome Postdoctoral Fellowship [grant number 101521/ Z/12/Z]

    Neural substrates of cue reactivity and craving in Gambling Disorder

    Get PDF
    Cue reactivity is an established procedure in addictions research for examining the subjective experience and neural basis of craving. This experiment sought to quantify cue-related brain responses in Gambling Disorder using personally tailored cues in conjunction with subjective craving, as well as a comparison with appetitive non-gambling stimuli. Participants with Gambling Disorder (n=19) attending treatment and 19 controls viewed personally tailored blocks of gambling-related cues, as well as neutral cues and highly appetitive (food) images during a functional MRI scan performed ~2-3 hours after a usual meal. fMRI analysis examined cue-related brain activity, cue-related changes in connectivity, and associations with block-by-block craving ratings. Craving ratings in the participants with Gambling Disorder increased following gambling cues compared with non-gambling cues. fMRI analysis revealed group differences in left insula and anterior cingulate cortex, with the Gambling Disorder group showing greater reactivity to the gambling cues, but no differences to the food cues. In participants with Gambling Disorder, craving to gamble correlated positively with gambling cue-related activity in the bilateral insula and ventral striatum, and negatively with functional connectivity between the ventral striatum and the medial PFC. Gambling cues, but not food cues, elicit increased brain responses in reward-related circuitry in individuals with Gambling Disorder (compared to controls), providing support for the incentive sensitisation theory of addiction. Activity in the insula co-varied with craving intensity, and may be a target for interventions.This study was funded by the Medical Research Council—MRC G1002226 (Nutt) and G1100554 (Clark). We wish to thank the study participants and the clinical team at Imanova, Centre for Imaging Sciences. The research was supported by the National Institute for Health Research (NIHR) Imperial Biomedical Research Centre. SPS was funded by the Cambridge Home Scholarship Scheme (CHSS)

    Neural and neurocognitive markers of vulnerability to gambling disorder: a study of unaffected siblings

    Get PDF
    Psychological and neurobiological markers in individuals with gambling disorder (GD) could reflect transdiagnostic vulnerability to addiction or neuroadaptive consequences of long-term gambling. Using an endophenotypic approach to identify vulnerability markers, we tested the biological relatives of cases with GD. Male participants seeking treatment for GD (n = 20) were compared with a male control group (n = 18). Biological siblings of cases with GD (n = 17, unrelated to the current GD group) were compared with a separate control group (n = 19) that overlapped partially with the GD control group. Participants completed a comprehensive assessment of clinical scales, neurocognitive functioning, and fMRI of unexpected financial reward. The GD group displayed elevated levels of self-report impulsivity and delay discounting, and increased risk-taking on the Cambridge Gamble Task. We did not observe impaired motor impulsivity on the stop-signal task. Siblings of GD showed some overlapping effects; namely, elevated impulsivity (negative urgency) and increased risk-taking on the Cambridge Gamble Task. We did not observe any differences in the neural response to win outcomes, either in the GD or sibling analysis compared with their control group. Within the GD group, activity in the thalamus and caudate correlated negatively with gambling severity. Increased impulsivity and risk-taking in GD are present in biological relatives of cases with GD, suggesting these markers may represent pre-existing vulnerability to GD

    Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions

    No full text
    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items
    corecore