220 research outputs found

    Terahertz frequency quantum cascade lasers for use as waveguide-integrated local oscillators

    Get PDF
    Since their first demonstration in 2002, the performance of terahertz frequency quantum cascade lasers has developed extremely rapidly. We consider the potential use of terahertz frequency quantum cascade lasers as local oscillators in satellite-borne instrumentation for future Earth observation and planetary science missions. A specific focus will be on the development of compact, waveguide-integrated, heterodyne detection systems for the supra-terahertz range

    Feedhorn-integrated THz QCL local oscillators for the LOCUS atmospheric sounder

    Get PDF
    The LOCUS atmospheric sounder is a satellite-borne THz radiometer concept, for studying molecular species in the mesosphere and lower thermosphere. We report waveguide-integrated THz quantum-cascade lasers for use as 3.5 THz local oscillators. A waveguide-integration scheme, using an integrated diagonal feedhorn significantly improves power outcoupling. 1.3 mW THz emission is demonstrated in a space-qualified Stirling cryocooler at 57 K, with ∌15° beam divergence

    Waveguide-integrated Terahertz Quantum Cascade Lasers for use as Local Oscillators

    Get PDF
    Terahertz-frequency quantum cascade lasers (THz QCLs) are compact sources of 1–5 THz radiation, which show great promise for use as local oscillators in satellite-borne heterodyne radiometers. We present a waveguide-integration scheme, in which a THz QCL is mounted in a copper heat-sink block, with radiation outcoupled into a precision micromachined rectangular waveguide. Electrical bias is provided by an integrated SMA connector and mounting points are provided for attachment to a cryocooler and a temperature sensor. The integration scheme is mechanically robust and is shown to have negligible impact on the thermal performance or threshold current of the device. The emitted beam quality is significantly improved, compared with that of a conventional device, with single-lobed profile with divergence <20 degrees

    Detection of 2.2-3.5 Terahertz Radiation Using a Quasi-Optically Mounted Planar Schottky Diode

    Get PDF
    Practical supra-terahertz (1–5 THz) heterodyne radiometry systems require compact local oscillator and mixer components, which are suitable for robust waveguide integration. We demonstrate detection of radiation emitted by quantum cascade lasers at frequencies between 2.2 and 3.5 THz using room-temperature quasi-optically mounted planar Schottky diodes. These diodes are more readily integrated into waveguides than point-contact diodes, do not require the cryogenic environment of hot-electron bolometers and offer potentially better noise performance than superlattice devices

    Waveguide-integrated terahertz-frequency quantum cascade lasers for detection of trace-gas species

    Get PDF
    We demonstrate high-performance THz QCLs lasing at 2.2, 2.53, 3.5 and 4.7 THz, which target absorption lines of water, methane, hydroxyl and atomic oxygen respectively. Reliable single-mode targeting of gas species is obtained through the use of a photonic lattice design. A highly reproducible micro-machined waveguide block yields narrow beam-divergence and enables future integration of a complete THz heterodyne system including local-oscillator, mixer, and feed-horn

    Analysis of deuteration reactions using self-mixing in a terahertz quantum-cascade laser

    Get PDF
    We present a THz-QCL spectroscopy technique, for analyzing deuteration reactions in gases. This is an important analytical chemistry technique, underpinning mechanistic studies. We use a self-mixing interferometry approach, in which radiation from a multimode QCL is fed-back into the device, via a gas cell, causing perturbations to the QCL voltage. This enables “detector-free” sensing over a 17-GHz range, allowing speciated measurements of reactions involving H2O, D2O, HDO, CH3OH and CH2DOD

    Electromagnetic modelling of a terahertz-frequency quantum-cascade laser integrated with dual diagonal feedhorns

    Get PDF
    We present an electromagnetic model of a THz QCL, integrated with a micro-machined waveguide and dual diagonal feedhorns, enabling simultaneous access to both facets of the QCL. A hybrid finite-element/Fourier transform approach enables analysis of both the near and far-fields in agreement with experimental observations. The far-field pattern shows enhancement of the beam profile when compared with an unmounted QCL, in terms of beam divergence and side-lobe suppression ratio

    Electromagnetic-field analysis of diagonal-feedhorn antennas for terahertz-frequency quantum-cascade laser integration

    Get PDF
    We present an electromagnetic-field analysis of a terahertz-frequency quantum-cascade laser (THz QCL) integrated with a mechanically micro-machined waveguide cavity and diagonal feedhorn. A hybrid finite-element/Fourier transform approach enables analysis of both the near-field and far-field regions and is shown to agree well with experimental observations. The far-field antenna patterns show enhancement of the beam profile when compared with an unmounted QCL, in terms of beam divergence and side-lobe suppression ratio. Furthermore, we demonstrate integration of the QCL with dual diagonal feedhorns, enabling simultaneous access to both facets of the QCL, underpinning future integration with a satellite-based receiver and frequency-stabilization subsystem

    Development of Terahertz Frequency Quantum Cascade Lasers for the Applications as Local Oscillators

    Get PDF
    We report the development of terahertz frequency quantum cascade lasers for applications as local oscillators. A range of active region designs and waveguide structures have been characterised in order to develop the devices for operation at high temperatures, with high output power and low dissipated power. Quantum cascade lasers based on a LO-phonon bound-to-continuum design emitting at 3.5 THz, suitable for the detection of hydroxyl, were fabricated with a double-metal (gold-gold) waveguide structure. These devices operated in continuous-wave up to 94 K, with an output power of 0.4 mW and dissipated power of 1.7 W at 10 K. A new, mechanically robust packaging and waveguide-integration scheme is also presented for operation outside laboratory environments, which further allows integration of quantum cascade lasers with terahertz waveguides, mixers and other system components. This integration scheme yielded a better beam quality, with a divergence of <20°, compared to standard double-metal devices. Its impacts on the device performance, such as operating temperature range, spectral emission, output power and electrical properties, are presented

    PPI-Delayed Diagnosis of Gastrinoma: Oncologic Victim of Pharmacologic Success

    Get PDF
    Functional neuroendocrine tumors are often low-grade malignant neoplasms that can be cured by surgery if detected early, and such detection may in turn be accelerated by the recognition of neuropeptide hypersecretion syndromes. Uniquely, however, relief of peptic symptoms induced by hypergastrinemia is now available from acid-suppressive drugs such as proton-pump inhibitors (PPIs). Here we describe a clinical case in which time to diagnosis from the onset of peptic symptoms was delayed more than 10 years, in part reflecting symptom masking by continuous prescription of the PPI omeprazole. We propose diagnostic criteria for this under-recognized new clinical syndrome, and recommend that physicians routinely measure serum gastrin levels in persistent cases of PPI-dependent dyspepsia unassociated with H. pylori
    • 

    corecore